Metamath Proof Explorer


Theorem bnj517

Description: Technical lemma for bnj518 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (Proof shortened by Mario Carneiro, 22-Dec-2016) (New usage is discouraged.)

Ref Expression
Hypotheses bnj517.1 φ F = pred X A R
bnj517.2 ψ i ω suc i N F suc i = y F i pred y A R
Assertion bnj517 N ω φ ψ n N F n A

Proof

Step Hyp Ref Expression
1 bnj517.1 φ F = pred X A R
2 bnj517.2 ψ i ω suc i N F suc i = y F i pred y A R
3 fveq2 m = F m = F
4 simpl2 N ω φ ψ m N φ
5 4 1 sylib N ω φ ψ m N F = pred X A R
6 3 5 sylan9eqr N ω φ ψ m N m = F m = pred X A R
7 bnj213 pred X A R A
8 6 7 eqsstrdi N ω φ ψ m N m = F m A
9 r19.29r i ω m = suc i i ω suc i N F suc i = y F i pred y A R i ω m = suc i suc i N F suc i = y F i pred y A R
10 eleq1 m = suc i m N suc i N
11 10 biimpd m = suc i m N suc i N
12 fveqeq2 m = suc i F m = y F i pred y A R F suc i = y F i pred y A R
13 bnj213 pred y A R A
14 13 rgenw y F i pred y A R A
15 iunss y F i pred y A R A y F i pred y A R A
16 14 15 mpbir y F i pred y A R A
17 sseq1 F m = y F i pred y A R F m A y F i pred y A R A
18 16 17 mpbiri F m = y F i pred y A R F m A
19 12 18 syl6bir m = suc i F suc i = y F i pred y A R F m A
20 11 19 imim12d m = suc i suc i N F suc i = y F i pred y A R m N F m A
21 20 imp m = suc i suc i N F suc i = y F i pred y A R m N F m A
22 21 rexlimivw i ω m = suc i suc i N F suc i = y F i pred y A R m N F m A
23 9 22 syl i ω m = suc i i ω suc i N F suc i = y F i pred y A R m N F m A
24 23 ex i ω m = suc i i ω suc i N F suc i = y F i pred y A R m N F m A
25 24 com3l i ω suc i N F suc i = y F i pred y A R m N i ω m = suc i F m A
26 2 25 sylbi ψ m N i ω m = suc i F m A
27 26 3ad2ant3 N ω φ ψ m N i ω m = suc i F m A
28 27 imp31 N ω φ ψ m N i ω m = suc i F m A
29 simpr N ω φ ψ m N m N
30 simpl1 N ω φ ψ m N N ω
31 elnn m N N ω m ω
32 29 30 31 syl2anc N ω φ ψ m N m ω
33 nn0suc m ω m = i ω m = suc i
34 32 33 syl N ω φ ψ m N m = i ω m = suc i
35 8 28 34 mpjaodan N ω φ ψ m N F m A
36 35 ralrimiva N ω φ ψ m N F m A
37 fveq2 m = n F m = F n
38 37 sseq1d m = n F m A F n A
39 38 cbvralvw m N F m A n N F n A
40 36 39 sylib N ω φ ψ n N F n A