Metamath Proof Explorer


Theorem bnj518

Description: Technical lemma for bnj852 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj518.1 φ f = pred x A R
bnj518.2 ψ i ω suc i n f suc i = y f i pred y A R
bnj518.3 τ φ ψ n ω p n
Assertion bnj518 R FrSe A τ y f p pred y A R V

Proof

Step Hyp Ref Expression
1 bnj518.1 φ f = pred x A R
2 bnj518.2 ψ i ω suc i n f suc i = y f i pred y A R
3 bnj518.3 τ φ ψ n ω p n
4 bnj334 φ ψ n ω p n n ω φ ψ p n
5 3 4 bitri τ n ω φ ψ p n
6 df-bnj17 n ω φ ψ p n n ω φ ψ p n
7 1 2 bnj517 n ω φ ψ p n f p A
8 7 r19.21bi n ω φ ψ p n f p A
9 6 8 sylbi n ω φ ψ p n f p A
10 5 9 sylbi τ f p A
11 ssel f p A y f p y A
12 bnj93 R FrSe A y A pred y A R V
13 12 ex R FrSe A y A pred y A R V
14 11 13 sylan9r R FrSe A f p A y f p pred y A R V
15 14 ralrimiv R FrSe A f p A y f p pred y A R V
16 10 15 sylan2 R FrSe A τ y f p pred y A R V