Metamath Proof Explorer


Theorem bnj525

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypothesis bnj525.1 A V
Assertion bnj525 [˙A / x]˙ φ φ

Proof

Step Hyp Ref Expression
1 bnj525.1 A V
2 sbcg A V [˙A / x]˙ φ φ
3 1 2 ax-mp [˙A / x]˙ φ φ