Metamath Proof Explorer


Theorem bnj529

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypothesis bnj529.1 D = ω
Assertion bnj529 M D M

Proof

Step Hyp Ref Expression
1 bnj529.1 D = ω
2 eldifsn M ω M ω M
3 2 biimpi M ω M ω M
4 3 1 eleq2s M D M ω M
5 nnord M ω Ord M
6 5 anim1i M ω M Ord M M
7 ord0eln0 Ord M M M
8 7 biimpar Ord M M M
9 4 6 8 3syl M D M