Metamath Proof Explorer


Theorem bnj539

Description: Technical lemma for bnj852 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj539.1 ψ i ω suc i n F suc i = y F i pred y A R
bnj539.2 No typesetting found for |- ( ps' <-> [. M / n ]. ps ) with typecode |-
bnj539.3 M V
Assertion bnj539 Could not format assertion : No typesetting found for |- ( ps' <-> A. i e. _om ( suc i e. M -> ( F ` suc i ) = U_ y e. ( F ` i ) _pred ( y , A , R ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 bnj539.1 ψ i ω suc i n F suc i = y F i pred y A R
2 bnj539.2 Could not format ( ps' <-> [. M / n ]. ps ) : No typesetting found for |- ( ps' <-> [. M / n ]. ps ) with typecode |-
3 bnj539.3 M V
4 1 sbcbii [˙M / n]˙ ψ [˙M / n]˙ i ω suc i n F suc i = y F i pred y A R
5 3 bnj538 [˙M / n]˙ i ω suc i n F suc i = y F i pred y A R i ω [˙M / n]˙ suc i n F suc i = y F i pred y A R
6 sbcimg M V [˙M / n]˙ suc i n F suc i = y F i pred y A R [˙M / n]˙ suc i n [˙M / n]˙ F suc i = y F i pred y A R
7 3 6 ax-mp [˙M / n]˙ suc i n F suc i = y F i pred y A R [˙M / n]˙ suc i n [˙M / n]˙ F suc i = y F i pred y A R
8 sbcel2gv M V [˙M / n]˙ suc i n suc i M
9 3 8 ax-mp [˙M / n]˙ suc i n suc i M
10 3 bnj525 [˙M / n]˙ F suc i = y F i pred y A R F suc i = y F i pred y A R
11 9 10 imbi12i [˙M / n]˙ suc i n [˙M / n]˙ F suc i = y F i pred y A R suc i M F suc i = y F i pred y A R
12 7 11 bitri [˙M / n]˙ suc i n F suc i = y F i pred y A R suc i M F suc i = y F i pred y A R
13 12 ralbii i ω [˙M / n]˙ suc i n F suc i = y F i pred y A R i ω suc i M F suc i = y F i pred y A R
14 5 13 bitri [˙M / n]˙ i ω suc i n F suc i = y F i pred y A R i ω suc i M F suc i = y F i pred y A R
15 4 14 bitri [˙M / n]˙ ψ i ω suc i M F suc i = y F i pred y A R
16 2 15 bitri Could not format ( ps' <-> A. i e. _om ( suc i e. M -> ( F ` suc i ) = U_ y e. ( F ` i ) _pred ( y , A , R ) ) ) : No typesetting found for |- ( ps' <-> A. i e. _om ( suc i e. M -> ( F ` suc i ) = U_ y e. ( F ` i ) _pred ( y , A , R ) ) ) with typecode |-