Metamath Proof Explorer


Theorem bnj544

Description: Technical lemma for bnj852 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj544.1 No typesetting found for |- ( ph' <-> ( f ` (/) ) = _pred ( x , A , R ) ) with typecode |-
bnj544.2 No typesetting found for |- ( ps' <-> A. i e. _om ( suc i e. m -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) with typecode |-
bnj544.3 D = ω
bnj544.4 G = f m y f p pred y A R
bnj544.5 No typesetting found for |- ( ta <-> ( f Fn m /\ ph' /\ ps' ) ) with typecode |-
bnj544.6 σ m D n = suc m p m
Assertion bnj544 R FrSe A τ σ G Fn n

Proof

Step Hyp Ref Expression
1 bnj544.1 Could not format ( ph' <-> ( f ` (/) ) = _pred ( x , A , R ) ) : No typesetting found for |- ( ph' <-> ( f ` (/) ) = _pred ( x , A , R ) ) with typecode |-
2 bnj544.2 Could not format ( ps' <-> A. i e. _om ( suc i e. m -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) : No typesetting found for |- ( ps' <-> A. i e. _om ( suc i e. m -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) with typecode |-
3 bnj544.3 D = ω
4 bnj544.4 G = f m y f p pred y A R
5 bnj544.5 Could not format ( ta <-> ( f Fn m /\ ph' /\ ps' ) ) : No typesetting found for |- ( ta <-> ( f Fn m /\ ph' /\ ps' ) ) with typecode |-
6 bnj544.6 σ m D n = suc m p m
7 3 bnj923 m D m ω
8 7 3anim1i m D n = suc m p m m ω n = suc m p m
9 6 8 sylbi σ m ω n = suc m p m
10 biid m ω n = suc m p m m ω n = suc m p m
11 1 2 4 5 10 bnj543 R FrSe A τ m ω n = suc m p m G Fn n
12 9 11 syl3an3 R FrSe A τ σ G Fn n