Metamath Proof Explorer


Theorem bnj545

Description: Technical lemma for bnj852 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj545.1 No typesetting found for |- ( ph' <-> ( f ` (/) ) = _pred ( x , A , R ) ) with typecode |-
bnj545.2 D = ω
bnj545.3 G = f m y f p pred y A R
bnj545.4 No typesetting found for |- ( ta <-> ( f Fn m /\ ph' /\ ps' ) ) with typecode |-
bnj545.5 σ m D n = suc m p m
bnj545.6 R FrSe A τ σ G Fn n
bnj545.7 No typesetting found for |- ( ph" <-> ( G ` (/) ) = _pred ( x , A , R ) ) with typecode |-
Assertion bnj545 Could not format assertion : No typesetting found for |- ( ( R _FrSe A /\ ta /\ si ) -> ph" ) with typecode |-

Proof

Step Hyp Ref Expression
1 bnj545.1 Could not format ( ph' <-> ( f ` (/) ) = _pred ( x , A , R ) ) : No typesetting found for |- ( ph' <-> ( f ` (/) ) = _pred ( x , A , R ) ) with typecode |-
2 bnj545.2 D = ω
3 bnj545.3 G = f m y f p pred y A R
4 bnj545.4 Could not format ( ta <-> ( f Fn m /\ ph' /\ ps' ) ) : No typesetting found for |- ( ta <-> ( f Fn m /\ ph' /\ ps' ) ) with typecode |-
5 bnj545.5 σ m D n = suc m p m
6 bnj545.6 R FrSe A τ σ G Fn n
7 bnj545.7 Could not format ( ph" <-> ( G ` (/) ) = _pred ( x , A , R ) ) : No typesetting found for |- ( ph" <-> ( G ` (/) ) = _pred ( x , A , R ) ) with typecode |-
8 4 simp1bi τ f Fn m
9 5 simp1bi σ m D
10 8 9 anim12i τ σ f Fn m m D
11 10 3adant1 R FrSe A τ σ f Fn m m D
12 2 bnj529 m D m
13 fndm f Fn m dom f = m
14 eleq2 dom f = m dom f m
15 14 biimparc m dom f = m dom f
16 12 13 15 syl2anr f Fn m m D dom f
17 11 16 syl R FrSe A τ σ dom f
18 6 fnfund R FrSe A τ σ Fun G
19 17 18 jca R FrSe A τ σ dom f Fun G
20 3 bnj931 f G
21 19 20 jctil R FrSe A τ σ f G dom f Fun G
22 df-3an dom f Fun G f G dom f Fun G f G
23 3anrot dom f Fun G f G Fun G f G dom f
24 ancom dom f Fun G f G f G dom f Fun G
25 22 23 24 3bitr3i Fun G f G dom f f G dom f Fun G
26 21 25 sylibr R FrSe A τ σ Fun G f G dom f
27 funssfv Fun G f G dom f G = f
28 26 27 syl R FrSe A τ σ G = f
29 4 simp2bi Could not format ( ta -> ph' ) : No typesetting found for |- ( ta -> ph' ) with typecode |-
30 29 3ad2ant2 Could not format ( ( R _FrSe A /\ ta /\ si ) -> ph' ) : No typesetting found for |- ( ( R _FrSe A /\ ta /\ si ) -> ph' ) with typecode |-
31 eqtr G = f f = pred x A R G = pred x A R
32 1 31 sylan2b Could not format ( ( ( G ` (/) ) = ( f ` (/) ) /\ ph' ) -> ( G ` (/) ) = _pred ( x , A , R ) ) : No typesetting found for |- ( ( ( G ` (/) ) = ( f ` (/) ) /\ ph' ) -> ( G ` (/) ) = _pred ( x , A , R ) ) with typecode |-
33 32 7 sylibr Could not format ( ( ( G ` (/) ) = ( f ` (/) ) /\ ph' ) -> ph" ) : No typesetting found for |- ( ( ( G ` (/) ) = ( f ` (/) ) /\ ph' ) -> ph" ) with typecode |-
34 28 30 33 syl2anc Could not format ( ( R _FrSe A /\ ta /\ si ) -> ph" ) : No typesetting found for |- ( ( R _FrSe A /\ ta /\ si ) -> ph" ) with typecode |-