Metamath Proof Explorer


Theorem bnj551

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion bnj551 m = suc p m = suc i p = i

Proof

Step Hyp Ref Expression
1 eqtr2 m = suc p m = suc i suc p = suc i
2 suc11reg suc p = suc i p = i
3 1 2 sylib m = suc p m = suc i p = i