Metamath Proof Explorer


Theorem bnj553

Description: Technical lemma for bnj852 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj553.1 No typesetting found for |- ( ph' <-> ( f ` (/) ) = _pred ( x , A , R ) ) with typecode |-
bnj553.2 No typesetting found for |- ( ps' <-> A. i e. _om ( suc i e. m -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) with typecode |-
bnj553.3 D = ω
bnj553.4 G = f m y f p pred y A R
bnj553.5 No typesetting found for |- ( ta <-> ( f Fn m /\ ph' /\ ps' ) ) with typecode |-
bnj553.6 σ m D n = suc m p m
bnj553.7 C = y f p pred y A R
bnj553.8 G = f m C
bnj553.9 B = y f i pred y A R
bnj553.10 K = y G i pred y A R
bnj553.11 L = y G p pred y A R
bnj553.12 R FrSe A τ σ G Fn n
Assertion bnj553 R FrSe A τ σ i m p = i G m = L

Proof

Step Hyp Ref Expression
1 bnj553.1 Could not format ( ph' <-> ( f ` (/) ) = _pred ( x , A , R ) ) : No typesetting found for |- ( ph' <-> ( f ` (/) ) = _pred ( x , A , R ) ) with typecode |-
2 bnj553.2 Could not format ( ps' <-> A. i e. _om ( suc i e. m -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) : No typesetting found for |- ( ps' <-> A. i e. _om ( suc i e. m -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) with typecode |-
3 bnj553.3 D = ω
4 bnj553.4 G = f m y f p pred y A R
5 bnj553.5 Could not format ( ta <-> ( f Fn m /\ ph' /\ ps' ) ) : No typesetting found for |- ( ta <-> ( f Fn m /\ ph' /\ ps' ) ) with typecode |-
6 bnj553.6 σ m D n = suc m p m
7 bnj553.7 C = y f p pred y A R
8 bnj553.8 G = f m C
9 bnj553.9 B = y f i pred y A R
10 bnj553.10 K = y G i pred y A R
11 bnj553.11 L = y G p pred y A R
12 bnj553.12 R FrSe A τ σ G Fn n
13 12 fnfund R FrSe A τ σ Fun G
14 opex m C V
15 14 snid m C m C
16 elun2 m C m C m C f m C
17 15 16 ax-mp m C f m C
18 17 8 eleqtrri m C G
19 funopfv Fun G m C G G m = C
20 13 18 19 mpisyl R FrSe A τ σ G m = C
21 20 3ad2ant1 R FrSe A τ σ i m p = i G m = C
22 fveq2 p = i G p = G i
23 22 bnj1113 p = i y G p pred y A R = y G i pred y A R
24 23 11 10 3eqtr4g p = i L = K
25 24 3ad2ant3 R FrSe A τ σ i m p = i L = K
26 5 9 10 4 12 bnj548 R FrSe A τ σ i m B = K
27 26 3adant3 R FrSe A τ σ i m p = i B = K
28 fveq2 p = i f p = f i
29 28 bnj1113 p = i y f p pred y A R = y f i pred y A R
30 9 7 eqeq12i B = C y f i pred y A R = y f p pred y A R
31 eqcom y f i pred y A R = y f p pred y A R y f p pred y A R = y f i pred y A R
32 30 31 bitri B = C y f p pred y A R = y f i pred y A R
33 29 32 sylibr p = i B = C
34 33 3ad2ant3 R FrSe A τ σ i m p = i B = C
35 25 27 34 3eqtr2rd R FrSe A τ σ i m p = i C = L
36 21 35 eqtrd R FrSe A τ σ i m p = i G m = L