Metamath Proof Explorer


Theorem bnj553

Description: Technical lemma for bnj852 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj553.1 No typesetting found for |- ( ph' <-> ( f ` (/) ) = _pred ( x , A , R ) ) with typecode |-
bnj553.2 No typesetting found for |- ( ps' <-> A. i e. _om ( suc i e. m -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) with typecode |-
bnj553.3 D=ω
bnj553.4 G=fmyfppredyAR
bnj553.5 No typesetting found for |- ( ta <-> ( f Fn m /\ ph' /\ ps' ) ) with typecode |-
bnj553.6 σmDn=sucmpm
bnj553.7 C=yfppredyAR
bnj553.8 G=fmC
bnj553.9 B=yfipredyAR
bnj553.10 K=yGipredyAR
bnj553.11 L=yGppredyAR
bnj553.12 RFrSeAτσGFnn
Assertion bnj553 RFrSeAτσimp=iGm=L

Proof

Step Hyp Ref Expression
1 bnj553.1 Could not format ( ph' <-> ( f ` (/) ) = _pred ( x , A , R ) ) : No typesetting found for |- ( ph' <-> ( f ` (/) ) = _pred ( x , A , R ) ) with typecode |-
2 bnj553.2 Could not format ( ps' <-> A. i e. _om ( suc i e. m -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) : No typesetting found for |- ( ps' <-> A. i e. _om ( suc i e. m -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) with typecode |-
3 bnj553.3 D=ω
4 bnj553.4 G=fmyfppredyAR
5 bnj553.5 Could not format ( ta <-> ( f Fn m /\ ph' /\ ps' ) ) : No typesetting found for |- ( ta <-> ( f Fn m /\ ph' /\ ps' ) ) with typecode |-
6 bnj553.6 σmDn=sucmpm
7 bnj553.7 C=yfppredyAR
8 bnj553.8 G=fmC
9 bnj553.9 B=yfipredyAR
10 bnj553.10 K=yGipredyAR
11 bnj553.11 L=yGppredyAR
12 bnj553.12 RFrSeAτσGFnn
13 12 fnfund RFrSeAτσFunG
14 opex mCV
15 14 snid mCmC
16 elun2 mCmCmCfmC
17 15 16 ax-mp mCfmC
18 17 8 eleqtrri mCG
19 funopfv FunGmCGGm=C
20 13 18 19 mpisyl RFrSeAτσGm=C
21 20 3ad2ant1 RFrSeAτσimp=iGm=C
22 fveq2 p=iGp=Gi
23 22 bnj1113 p=iyGppredyAR=yGipredyAR
24 23 11 10 3eqtr4g p=iL=K
25 24 3ad2ant3 RFrSeAτσimp=iL=K
26 5 9 10 4 12 bnj548 RFrSeAτσimB=K
27 26 3adant3 RFrSeAτσimp=iB=K
28 fveq2 p=ifp=fi
29 28 bnj1113 p=iyfppredyAR=yfipredyAR
30 9 7 eqeq12i B=CyfipredyAR=yfppredyAR
31 eqcom yfipredyAR=yfppredyARyfppredyAR=yfipredyAR
32 30 31 bitri B=CyfppredyAR=yfipredyAR
33 29 32 sylibr p=iB=C
34 33 3ad2ant3 RFrSeAτσimp=iB=C
35 25 27 34 3eqtr2rd RFrSeAτσimp=iC=L
36 21 35 eqtrd RFrSeAτσimp=iGm=L