Description: Technical lemma for bnj852 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bnj553.1 | No typesetting found for |- ( ph' <-> ( f ` (/) ) = _pred ( x , A , R ) ) with typecode |- | |
bnj553.2 | No typesetting found for |- ( ps' <-> A. i e. _om ( suc i e. m -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) with typecode |- | ||
bnj553.3 | |
||
bnj553.4 | |
||
bnj553.5 | No typesetting found for |- ( ta <-> ( f Fn m /\ ph' /\ ps' ) ) with typecode |- | ||
bnj553.6 | |
||
bnj553.7 | |
||
bnj553.8 | |
||
bnj553.9 | |
||
bnj553.10 | |
||
bnj553.11 | |
||
bnj553.12 | |
||
Assertion | bnj553 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj553.1 | Could not format ( ph' <-> ( f ` (/) ) = _pred ( x , A , R ) ) : No typesetting found for |- ( ph' <-> ( f ` (/) ) = _pred ( x , A , R ) ) with typecode |- | |
2 | bnj553.2 | Could not format ( ps' <-> A. i e. _om ( suc i e. m -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) : No typesetting found for |- ( ps' <-> A. i e. _om ( suc i e. m -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) with typecode |- | |
3 | bnj553.3 | |
|
4 | bnj553.4 | |
|
5 | bnj553.5 | Could not format ( ta <-> ( f Fn m /\ ph' /\ ps' ) ) : No typesetting found for |- ( ta <-> ( f Fn m /\ ph' /\ ps' ) ) with typecode |- | |
6 | bnj553.6 | |
|
7 | bnj553.7 | |
|
8 | bnj553.8 | |
|
9 | bnj553.9 | |
|
10 | bnj553.10 | |
|
11 | bnj553.11 | |
|
12 | bnj553.12 | |
|
13 | 12 | fnfund | |
14 | opex | |
|
15 | 14 | snid | |
16 | elun2 | |
|
17 | 15 16 | ax-mp | |
18 | 17 8 | eleqtrri | |
19 | funopfv | |
|
20 | 13 18 19 | mpisyl | |
21 | 20 | 3ad2ant1 | |
22 | fveq2 | |
|
23 | 22 | bnj1113 | |
24 | 23 11 10 | 3eqtr4g | |
25 | 24 | 3ad2ant3 | |
26 | 5 9 10 4 12 | bnj548 | |
27 | 26 | 3adant3 | |
28 | fveq2 | |
|
29 | 28 | bnj1113 | |
30 | 9 7 | eqeq12i | |
31 | eqcom | |
|
32 | 30 31 | bitri | |
33 | 29 32 | sylibr | |
34 | 33 | 3ad2ant3 | |
35 | 25 27 34 | 3eqtr2rd | |
36 | 21 35 | eqtrd | |