Metamath Proof Explorer


Theorem bnj554

Description: Technical lemma for bnj852 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj554.19 η m D n = suc m p ω m = suc p
bnj554.20 ζ i ω suc i n m = suc i
bnj554.21 K = y G i pred y A R
bnj554.22 L = y G p pred y A R
bnj554.23 K = y G i pred y A R
bnj554.24 L = y G p pred y A R
Assertion bnj554 η ζ G m = L G suc i = K

Proof

Step Hyp Ref Expression
1 bnj554.19 η m D n = suc m p ω m = suc p
2 bnj554.20 ζ i ω suc i n m = suc i
3 bnj554.21 K = y G i pred y A R
4 bnj554.22 L = y G p pred y A R
5 bnj554.23 K = y G i pred y A R
6 bnj554.24 L = y G p pred y A R
7 1 bnj1254 η m = suc p
8 2 simp3bi ζ m = suc i
9 simpr m = suc p m = suc i m = suc i
10 bnj551 m = suc p m = suc i p = i
11 fveq2 m = suc i G m = G suc i
12 fveq2 p = i G p = G i
13 iuneq1 G p = G i y G p pred y A R = y G i pred y A R
14 13 6 5 3eqtr4g G p = G i L = K
15 12 14 syl p = i L = K
16 11 15 eqeqan12d m = suc i p = i G m = L G suc i = K
17 9 10 16 syl2anc m = suc p m = suc i G m = L G suc i = K
18 7 8 17 syl2an η ζ G m = L G suc i = K