Metamath Proof Explorer


Theorem bnj556

Description: Technical lemma for bnj852 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj556.18 σ m D n = suc m p m
bnj556.19 η m D n = suc m p ω m = suc p
Assertion bnj556 η σ

Proof

Step Hyp Ref Expression
1 bnj556.18 σ m D n = suc m p m
2 bnj556.19 η m D n = suc m p ω m = suc p
3 vex p V
4 3 bnj216 m = suc p p m
5 4 3anim3i m D n = suc m m = suc p m D n = suc m p m
6 5 adantr m D n = suc m m = suc p p ω m D n = suc m p m
7 bnj258 m D n = suc m p ω m = suc p m D n = suc m m = suc p p ω
8 2 7 bitri η m D n = suc m m = suc p p ω
9 6 8 1 3imtr4i η σ