Metamath Proof Explorer


Theorem bnj556

Description: Technical lemma for bnj852 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj556.18 σmDn=sucmpm
bnj556.19 ηmDn=sucmpωm=sucp
Assertion bnj556 ησ

Proof

Step Hyp Ref Expression
1 bnj556.18 σmDn=sucmpm
2 bnj556.19 ηmDn=sucmpωm=sucp
3 vex pV
4 3 bnj216 m=sucppm
5 4 3anim3i mDn=sucmm=sucpmDn=sucmpm
6 5 adantr mDn=sucmm=sucppωmDn=sucmpm
7 bnj258 mDn=sucmpωm=sucpmDn=sucmm=sucppω
8 2 7 bitri ηmDn=sucmm=sucppω
9 6 8 1 3imtr4i ησ