Metamath Proof Explorer


Theorem bnj557

Description: Technical lemma for bnj852 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj557.3 D = ω
bnj557.16 G = f m y f p pred y A R
bnj557.17 No typesetting found for |- ( ta <-> ( f Fn m /\ ph' /\ ps' ) ) with typecode |-
bnj557.18 σ m D n = suc m p m
bnj557.19 η m D n = suc m p ω m = suc p
bnj557.20 ζ i ω suc i n m = suc i
bnj557.21 B = y f i pred y A R
bnj557.22 C = y f p pred y A R
bnj557.23 K = y G i pred y A R
bnj557.24 L = y G p pred y A R
bnj557.25 G = f m C
bnj557.28 No typesetting found for |- ( ph' <-> ( f ` (/) ) = _pred ( x , A , R ) ) with typecode |-
bnj557.29 No typesetting found for |- ( ps' <-> A. i e. _om ( suc i e. m -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) with typecode |-
bnj557.36 R FrSe A τ σ G Fn n
Assertion bnj557 R FrSe A τ η ζ G m = L

Proof

Step Hyp Ref Expression
1 bnj557.3 D = ω
2 bnj557.16 G = f m y f p pred y A R
3 bnj557.17 Could not format ( ta <-> ( f Fn m /\ ph' /\ ps' ) ) : No typesetting found for |- ( ta <-> ( f Fn m /\ ph' /\ ps' ) ) with typecode |-
4 bnj557.18 σ m D n = suc m p m
5 bnj557.19 η m D n = suc m p ω m = suc p
6 bnj557.20 ζ i ω suc i n m = suc i
7 bnj557.21 B = y f i pred y A R
8 bnj557.22 C = y f p pred y A R
9 bnj557.23 K = y G i pred y A R
10 bnj557.24 L = y G p pred y A R
11 bnj557.25 G = f m C
12 bnj557.28 Could not format ( ph' <-> ( f ` (/) ) = _pred ( x , A , R ) ) : No typesetting found for |- ( ph' <-> ( f ` (/) ) = _pred ( x , A , R ) ) with typecode |-
13 bnj557.29 Could not format ( ps' <-> A. i e. _om ( suc i e. m -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) : No typesetting found for |- ( ps' <-> A. i e. _om ( suc i e. m -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) with typecode |-
14 bnj557.36 R FrSe A τ σ G Fn n
15 3an4anass R FrSe A τ η ζ R FrSe A τ η ζ
16 4 5 bnj556 η σ
17 16 3anim3i R FrSe A τ η R FrSe A τ σ
18 vex i V
19 18 bnj216 m = suc i i m
20 6 19 bnj837 ζ i m
21 17 20 anim12i R FrSe A τ η ζ R FrSe A τ σ i m
22 15 21 sylbir R FrSe A τ η ζ R FrSe A τ σ i m
23 5 bnj1254 η m = suc p
24 6 simp3bi ζ m = suc i
25 bnj551 m = suc p m = suc i p = i
26 23 24 25 syl2an η ζ p = i
27 26 adantl R FrSe A τ η ζ p = i
28 22 27 jca R FrSe A τ η ζ R FrSe A τ σ i m p = i
29 bnj256 R FrSe A τ η ζ R FrSe A τ η ζ
30 df-3an R FrSe A τ σ i m p = i R FrSe A τ σ i m p = i
31 28 29 30 3imtr4i R FrSe A τ η ζ R FrSe A τ σ i m p = i
32 12 13 1 2 3 4 8 11 7 9 10 14 bnj553 R FrSe A τ σ i m p = i G m = L
33 31 32 syl R FrSe A τ η ζ G m = L