Metamath Proof Explorer


Theorem bnj558

Description: Technical lemma for bnj852 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj558.3 D = ω
bnj558.16 G = f m y f p pred y A R
bnj558.17 No typesetting found for |- ( ta <-> ( f Fn m /\ ph' /\ ps' ) ) with typecode |-
bnj558.18 σ m D n = suc m p m
bnj558.19 η m D n = suc m p ω m = suc p
bnj558.20 ζ i ω suc i n m = suc i
bnj558.21 B = y f i pred y A R
bnj558.22 C = y f p pred y A R
bnj558.23 K = y G i pred y A R
bnj558.24 L = y G p pred y A R
bnj558.25 G = f m C
bnj558.28 No typesetting found for |- ( ph' <-> ( f ` (/) ) = _pred ( x , A , R ) ) with typecode |-
bnj558.29 No typesetting found for |- ( ps' <-> A. i e. _om ( suc i e. m -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) with typecode |-
bnj558.36 R FrSe A τ σ G Fn n
Assertion bnj558 R FrSe A τ η ζ G suc i = K

Proof

Step Hyp Ref Expression
1 bnj558.3 D = ω
2 bnj558.16 G = f m y f p pred y A R
3 bnj558.17 Could not format ( ta <-> ( f Fn m /\ ph' /\ ps' ) ) : No typesetting found for |- ( ta <-> ( f Fn m /\ ph' /\ ps' ) ) with typecode |-
4 bnj558.18 σ m D n = suc m p m
5 bnj558.19 η m D n = suc m p ω m = suc p
6 bnj558.20 ζ i ω suc i n m = suc i
7 bnj558.21 B = y f i pred y A R
8 bnj558.22 C = y f p pred y A R
9 bnj558.23 K = y G i pred y A R
10 bnj558.24 L = y G p pred y A R
11 bnj558.25 G = f m C
12 bnj558.28 Could not format ( ph' <-> ( f ` (/) ) = _pred ( x , A , R ) ) : No typesetting found for |- ( ph' <-> ( f ` (/) ) = _pred ( x , A , R ) ) with typecode |-
13 bnj558.29 Could not format ( ps' <-> A. i e. _om ( suc i e. m -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) : No typesetting found for |- ( ps' <-> A. i e. _om ( suc i e. m -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) with typecode |-
14 bnj558.36 R FrSe A τ σ G Fn n
15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 bnj557 R FrSe A τ η ζ G m = L
16 bnj422 R FrSe A τ η ζ η ζ R FrSe A τ
17 bnj253 η ζ R FrSe A τ η ζ R FrSe A τ
18 16 17 bitri R FrSe A τ η ζ η ζ R FrSe A τ
19 18 simp1bi R FrSe A τ η ζ η ζ
20 5 6 9 10 9 10 bnj554 η ζ G m = L G suc i = K
21 19 20 syl R FrSe A τ η ζ G m = L G suc i = K
22 15 21 mpbid R FrSe A τ η ζ G suc i = K