Metamath Proof Explorer


Theorem bnj563

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj563.19 η m D n = suc m p ω m = suc p
bnj563.21 ρ i ω suc i n m suc i
Assertion bnj563 η ρ suc i m

Proof

Step Hyp Ref Expression
1 bnj563.19 η m D n = suc m p ω m = suc p
2 bnj563.21 ρ i ω suc i n m suc i
3 bnj312 m D n = suc m p ω m = suc p n = suc m m D p ω m = suc p
4 bnj252 n = suc m m D p ω m = suc p n = suc m m D p ω m = suc p
5 3 4 bitri m D n = suc m p ω m = suc p n = suc m m D p ω m = suc p
6 5 simplbi m D n = suc m p ω m = suc p n = suc m
7 1 6 sylbi η n = suc m
8 2 simp2bi ρ suc i n
9 2 simp3bi ρ m suc i
10 8 9 jca ρ suc i n m suc i
11 necom m suc i suc i m
12 eleq2 n = suc m suc i n suc i suc m
13 12 biimpa n = suc m suc i n suc i suc m
14 elsuci suc i suc m suc i m suc i = m
15 orcom suc i = m suc i m suc i m suc i = m
16 neor suc i = m suc i m suc i m suc i m
17 15 16 bitr3i suc i m suc i = m suc i m suc i m
18 14 17 sylib suc i suc m suc i m suc i m
19 18 imp suc i suc m suc i m suc i m
20 13 19 stoic3 n = suc m suc i n suc i m suc i m
21 11 20 syl3an3b n = suc m suc i n m suc i suc i m
22 21 3expb n = suc m suc i n m suc i suc i m
23 7 10 22 syl2an η ρ suc i m