Metamath Proof Explorer


Theorem bnj571

Description: Technical lemma for bnj852 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj571.3 D = ω
bnj571.16 G = f m y f p pred y A R
bnj571.17 No typesetting found for |- ( ta <-> ( f Fn m /\ ph' /\ ps' ) ) with typecode |-
bnj571.18 σ m D n = suc m p m
bnj571.19 η m D n = suc m p ω m = suc p
bnj571.20 ζ i ω suc i n m = suc i
bnj571.22 B = y f i pred y A R
bnj571.23 C = y f p pred y A R
bnj571.24 K = y G i pred y A R
bnj571.25 L = y G p pred y A R
bnj571.26 G = f m C
bnj571.29 No typesetting found for |- ( ph' <-> ( f ` (/) ) = _pred ( x , A , R ) ) with typecode |-
bnj571.30 No typesetting found for |- ( ps' <-> A. i e. _om ( suc i e. m -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) with typecode |-
bnj571.38 R FrSe A τ σ G Fn n
bnj571.21 ρ i ω suc i n m suc i
bnj571.40 R FrSe A τ η G Fn n
bnj571.33 No typesetting found for |- ( ps" <-> A. i e. _om ( suc i e. n -> ( G ` suc i ) = U_ y e. ( G ` i ) _pred ( y , A , R ) ) ) with typecode |-
Assertion bnj571 Could not format assertion : No typesetting found for |- ( ( R _FrSe A /\ ta /\ et ) -> ps" ) with typecode |-

Proof

Step Hyp Ref Expression
1 bnj571.3 D = ω
2 bnj571.16 G = f m y f p pred y A R
3 bnj571.17 Could not format ( ta <-> ( f Fn m /\ ph' /\ ps' ) ) : No typesetting found for |- ( ta <-> ( f Fn m /\ ph' /\ ps' ) ) with typecode |-
4 bnj571.18 σ m D n = suc m p m
5 bnj571.19 η m D n = suc m p ω m = suc p
6 bnj571.20 ζ i ω suc i n m = suc i
7 bnj571.22 B = y f i pred y A R
8 bnj571.23 C = y f p pred y A R
9 bnj571.24 K = y G i pred y A R
10 bnj571.25 L = y G p pred y A R
11 bnj571.26 G = f m C
12 bnj571.29 Could not format ( ph' <-> ( f ` (/) ) = _pred ( x , A , R ) ) : No typesetting found for |- ( ph' <-> ( f ` (/) ) = _pred ( x , A , R ) ) with typecode |-
13 bnj571.30 Could not format ( ps' <-> A. i e. _om ( suc i e. m -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) : No typesetting found for |- ( ps' <-> A. i e. _om ( suc i e. m -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) with typecode |-
14 bnj571.38 R FrSe A τ σ G Fn n
15 bnj571.21 ρ i ω suc i n m suc i
16 bnj571.40 R FrSe A τ η G Fn n
17 bnj571.33 Could not format ( ps" <-> A. i e. _om ( suc i e. n -> ( G ` suc i ) = U_ y e. ( G ` i ) _pred ( y , A , R ) ) ) : No typesetting found for |- ( ps" <-> A. i e. _om ( suc i e. n -> ( G ` suc i ) = U_ y e. ( G ` i ) _pred ( y , A , R ) ) ) with typecode |-
18 nfv i R FrSe A
19 nfv i f Fn m
20 nfv Could not format F/ i ph' : No typesetting found for |- F/ i ph' with typecode |-
21 nfra1 i i ω suc i m f suc i = y f i pred y A R
22 13 21 nfxfr Could not format F/ i ps' : No typesetting found for |- F/ i ps' with typecode |-
23 19 20 22 nf3an Could not format F/ i ( f Fn m /\ ph' /\ ps' ) : No typesetting found for |- F/ i ( f Fn m /\ ph' /\ ps' ) with typecode |-
24 3 23 nfxfr i τ
25 nfv i η
26 18 24 25 nf3an i R FrSe A τ η
27 df-bnj17 R FrSe A τ η ζ R FrSe A τ η ζ
28 3anass R FrSe A τ η i ω suc i n m = suc i R FrSe A τ η i ω suc i n m = suc i
29 3anrot m = suc i R FrSe A τ η i ω suc i n R FrSe A τ η i ω suc i n m = suc i
30 df-3an i ω suc i n m = suc i i ω suc i n m = suc i
31 6 30 bitri ζ i ω suc i n m = suc i
32 31 anbi2i R FrSe A τ η ζ R FrSe A τ η i ω suc i n m = suc i
33 28 29 32 3bitr4ri R FrSe A τ η ζ m = suc i R FrSe A τ η i ω suc i n
34 27 33 bitri R FrSe A τ η ζ m = suc i R FrSe A τ η i ω suc i n
35 1 2 3 4 5 6 7 8 9 10 11 12 13 14 bnj558 R FrSe A τ η ζ G suc i = K
36 34 35 sylbir m = suc i R FrSe A τ η i ω suc i n G suc i = K
37 36 3expib m = suc i R FrSe A τ η i ω suc i n G suc i = K
38 df-bnj17 R FrSe A τ η ρ R FrSe A τ η ρ
39 3anass R FrSe A τ η i ω suc i n m suc i R FrSe A τ η i ω suc i n m suc i
40 3anrot m suc i R FrSe A τ η i ω suc i n R FrSe A τ η i ω suc i n m suc i
41 df-3an i ω suc i n m suc i i ω suc i n m suc i
42 15 41 bitri ρ i ω suc i n m suc i
43 42 anbi2i R FrSe A τ η ρ R FrSe A τ η i ω suc i n m suc i
44 39 40 43 3bitr4ri R FrSe A τ η ρ m suc i R FrSe A τ η i ω suc i n
45 38 44 bitri R FrSe A τ η ρ m suc i R FrSe A τ η i ω suc i n
46 1 3 5 15 9 2 16 13 bnj570 R FrSe A τ η ρ G suc i = K
47 45 46 sylbir m suc i R FrSe A τ η i ω suc i n G suc i = K
48 47 3expib m suc i R FrSe A τ η i ω suc i n G suc i = K
49 37 48 pm2.61ine R FrSe A τ η i ω suc i n G suc i = K
50 49 9 eqtrdi R FrSe A τ η i ω suc i n G suc i = y G i pred y A R
51 50 exp32 R FrSe A τ η i ω suc i n G suc i = y G i pred y A R
52 26 51 alrimi R FrSe A τ η i i ω suc i n G suc i = y G i pred y A R
53 17 bnj946 Could not format ( ps" <-> A. i ( i e. _om -> ( suc i e. n -> ( G ` suc i ) = U_ y e. ( G ` i ) _pred ( y , A , R ) ) ) ) : No typesetting found for |- ( ps" <-> A. i ( i e. _om -> ( suc i e. n -> ( G ` suc i ) = U_ y e. ( G ` i ) _pred ( y , A , R ) ) ) ) with typecode |-
54 52 53 sylibr Could not format ( ( R _FrSe A /\ ta /\ et ) -> ps" ) : No typesetting found for |- ( ( R _FrSe A /\ ta /\ et ) -> ps" ) with typecode |-