Database  
				SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)  
				Mathbox for Jonathan Ben-Naim  
				Well founded induction and recursion  
				bnj589  
			 
				
		 
		 Metamath Proof Explorer 
		
			
		 
		 
		
		Description:   Technical lemma for bnj852  .  This lemma may no longer be used or have
       become an indirect lemma of the theorem in question (i.e. a lemma of a
       lemma... of the theorem).  (Contributed by Jonathan Ben-Naim , 3-Jun-2011)   (New usage is discouraged.) 
		
			
				
					 
					 
					Ref 
					Expression 
				 
					
						 
						Hypothesis 
						bnj589.1  
						   ⊢   ψ   ↔   ∀  i  ∈  ω       suc  ⁡  i    ∈  n    →    f  ⁡   suc  ⁡  i       =  ⋃  y  ∈   f  ⁡  i       pred  y  A  R                 
					 
				
					 
					Assertion 
					bnj589  
					   ⊢   ψ   ↔   ∀  k  ∈  ω       suc  ⁡  k    ∈  n    →    f  ⁡   suc  ⁡  k       =  ⋃  y  ∈   f  ⁡  k       pred  y  A  R                 
				 
			
		 
		 
			
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1  
							
								
							 
							bnj589.1  
							    ⊢   ψ   ↔   ∀  i  ∈  ω       suc  ⁡  i    ∈  n    →    f  ⁡   suc  ⁡  i       =  ⋃  y  ∈   f  ⁡  i       pred  y  A  R                 
						 
						
							2  
							
								1 
							 
							bnj222  
							    ⊢   ψ   ↔   ∀  k  ∈  ω       suc  ⁡  k    ∈  n    →    f  ⁡   suc  ⁡  k       =  ⋃  y  ∈   f  ⁡  k       pred  y  A  R