Metamath Proof Explorer


Theorem bnj590

Description: Technical lemma for bnj852 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypothesis bnj590.1 ψ i ω suc i n f suc i = y f i pred y A R
Assertion bnj590 B = suc i ψ i ω B n f B = y f i pred y A R

Proof

Step Hyp Ref Expression
1 bnj590.1 ψ i ω suc i n f suc i = y f i pred y A R
2 rsp i ω suc i n f suc i = y f i pred y A R i ω suc i n f suc i = y f i pred y A R
3 1 2 sylbi ψ i ω suc i n f suc i = y f i pred y A R
4 eleq1 B = suc i B n suc i n
5 fveqeq2 B = suc i f B = y f i pred y A R f suc i = y f i pred y A R
6 4 5 imbi12d B = suc i B n f B = y f i pred y A R suc i n f suc i = y f i pred y A R
7 6 imbi2d B = suc i i ω B n f B = y f i pred y A R i ω suc i n f suc i = y f i pred y A R
8 3 7 syl5ibr B = suc i ψ i ω B n f B = y f i pred y A R
9 8 imp B = suc i ψ i ω B n f B = y f i pred y A R