Metamath Proof Explorer


Theorem bnj596

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj596.1 φ x φ
bnj596.2 φ x ψ
Assertion bnj596 φ x φ ψ

Proof

Step Hyp Ref Expression
1 bnj596.1 φ x φ
2 bnj596.2 φ x ψ
3 2 ancli φ φ x ψ
4 1 nf5i x φ
5 4 19.42 x φ ψ φ x ψ
6 3 5 sylibr φ x φ ψ