Metamath Proof Explorer


Theorem bnj60

Description: Well-founded recursion, part 1 of 3. The proof has been taken from Chapter 4 of Don Monk's notes on Set Theory. See http://euclid.colorado.edu/~monkd/setth.pdf . (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj60.1 B = d | d A x d pred x A R d
bnj60.2 Y = x f pred x A R
bnj60.3 C = f | d B f Fn d x d f x = G Y
bnj60.4 F = C
Assertion bnj60 R FrSe A F Fn A

Proof

Step Hyp Ref Expression
1 bnj60.1 B = d | d A x d pred x A R d
2 bnj60.2 Y = x f pred x A R
3 bnj60.3 C = f | d B f Fn d x d f x = G Y
4 bnj60.4 F = C
5 1 2 3 bnj1497 g C Fun g
6 eqid dom g dom h = dom g dom h
7 1 2 3 6 bnj1311 R FrSe A g C h C g dom g dom h = h dom g dom h
8 7 3expia R FrSe A g C h C g dom g dom h = h dom g dom h
9 8 ralrimiv R FrSe A g C h C g dom g dom h = h dom g dom h
10 9 ralrimiva R FrSe A g C h C g dom g dom h = h dom g dom h
11 biid g C Fun g g C Fun g
12 biid g C Fun g g C h C g dom g dom h = h dom g dom h g C Fun g g C h C g dom g dom h = h dom g dom h
13 11 6 12 bnj1383 g C Fun g g C h C g dom g dom h = h dom g dom h Fun C
14 5 10 13 sylancr R FrSe A Fun C
15 4 funeqi Fun F Fun C
16 14 15 sylibr R FrSe A Fun F
17 1 2 3 4 bnj1498 R FrSe A dom F = A
18 16 17 bnj1422 R FrSe A F Fn A