Metamath Proof Explorer


Theorem bnj600

Description: Technical lemma for bnj852 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj600.1 φ f = pred x A R
bnj600.2 ψ i ω suc i n f suc i = y f i pred y A R
bnj600.3 D = ω
bnj600.4 χ R FrSe A x A ∃! f f Fn n φ ψ
bnj600.5 θ m D m E n [˙m / n]˙ χ
bnj600.10 No typesetting found for |- ( ph' <-> [. m / n ]. ph ) with typecode |-
bnj600.11 No typesetting found for |- ( ps' <-> [. m / n ]. ps ) with typecode |-
bnj600.12 No typesetting found for |- ( ch' <-> [. m / n ]. ch ) with typecode |-
bnj600.13 No typesetting found for |- ( ph" <-> [. G / f ]. ph ) with typecode |-
bnj600.14 No typesetting found for |- ( ps" <-> [. G / f ]. ps ) with typecode |-
bnj600.15 No typesetting found for |- ( ch" <-> [. G / f ]. ch ) with typecode |-
bnj600.16 G = f m y f p pred y A R
bnj600.17 No typesetting found for |- ( ta <-> ( f Fn m /\ ph' /\ ps' ) ) with typecode |-
bnj600.18 σ m D n = suc m p m
bnj600.19 η m D n = suc m p ω m = suc p
bnj600.20 ζ i ω suc i n m = suc i
bnj600.21 ρ i ω suc i n m suc i
bnj600.22 B = y f i pred y A R
bnj600.23 C = y f p pred y A R
bnj600.24 K = y G i pred y A R
bnj600.25 L = y G p pred y A R
bnj600.26 G = f m C
Assertion bnj600 n 1 𝑜 n D θ χ

Proof

Step Hyp Ref Expression
1 bnj600.1 φ f = pred x A R
2 bnj600.2 ψ i ω suc i n f suc i = y f i pred y A R
3 bnj600.3 D = ω
4 bnj600.4 χ R FrSe A x A ∃! f f Fn n φ ψ
5 bnj600.5 θ m D m E n [˙m / n]˙ χ
6 bnj600.10 Could not format ( ph' <-> [. m / n ]. ph ) : No typesetting found for |- ( ph' <-> [. m / n ]. ph ) with typecode |-
7 bnj600.11 Could not format ( ps' <-> [. m / n ]. ps ) : No typesetting found for |- ( ps' <-> [. m / n ]. ps ) with typecode |-
8 bnj600.12 Could not format ( ch' <-> [. m / n ]. ch ) : No typesetting found for |- ( ch' <-> [. m / n ]. ch ) with typecode |-
9 bnj600.13 Could not format ( ph" <-> [. G / f ]. ph ) : No typesetting found for |- ( ph" <-> [. G / f ]. ph ) with typecode |-
10 bnj600.14 Could not format ( ps" <-> [. G / f ]. ps ) : No typesetting found for |- ( ps" <-> [. G / f ]. ps ) with typecode |-
11 bnj600.15 Could not format ( ch" <-> [. G / f ]. ch ) : No typesetting found for |- ( ch" <-> [. G / f ]. ch ) with typecode |-
12 bnj600.16 G = f m y f p pred y A R
13 bnj600.17 Could not format ( ta <-> ( f Fn m /\ ph' /\ ps' ) ) : No typesetting found for |- ( ta <-> ( f Fn m /\ ph' /\ ps' ) ) with typecode |-
14 bnj600.18 σ m D n = suc m p m
15 bnj600.19 η m D n = suc m p ω m = suc p
16 bnj600.20 ζ i ω suc i n m = suc i
17 bnj600.21 ρ i ω suc i n m suc i
18 bnj600.22 B = y f i pred y A R
19 bnj600.23 C = y f p pred y A R
20 bnj600.24 K = y G i pred y A R
21 bnj600.25 L = y G p pred y A R
22 bnj600.26 G = f m C
23 12 bnj528 G V
24 vex m V
25 4 6 7 8 24 bnj207 Could not format ( ch' <-> ( ( R _FrSe A /\ x e. A ) -> E! f ( f Fn m /\ ph' /\ ps' ) ) ) : No typesetting found for |- ( ch' <-> ( ( R _FrSe A /\ x e. A ) -> E! f ( f Fn m /\ ph' /\ ps' ) ) ) with typecode |-
26 1 9 23 bnj609 Could not format ( ph" <-> ( G ` (/) ) = _pred ( x , A , R ) ) : No typesetting found for |- ( ph" <-> ( G ` (/) ) = _pred ( x , A , R ) ) with typecode |-
27 2 10 23 bnj611 Could not format ( ps" <-> A. i e. _om ( suc i e. n -> ( G ` suc i ) = U_ y e. ( G ` i ) _pred ( y , A , R ) ) ) : No typesetting found for |- ( ps" <-> A. i e. _om ( suc i e. n -> ( G ` suc i ) = U_ y e. ( G ` i ) _pred ( y , A , R ) ) ) with typecode |-
28 3 bnj168 n 1 𝑜 n D m D n = suc m
29 df-rex m D n = suc m m m D n = suc m
30 28 29 sylib n 1 𝑜 n D m m D n = suc m
31 3 bnj158 m D p ω m = suc p
32 df-rex p ω m = suc p p p ω m = suc p
33 31 32 sylib m D p p ω m = suc p
34 33 adantr m D n = suc m p p ω m = suc p
35 34 ancri m D n = suc m p p ω m = suc p m D n = suc m
36 35 bnj534 m D n = suc m p p ω m = suc p m D n = suc m
37 bnj432 m D n = suc m p ω m = suc p p ω m = suc p m D n = suc m
38 37 exbii p m D n = suc m p ω m = suc p p p ω m = suc p m D n = suc m
39 36 38 sylibr m D n = suc m p m D n = suc m p ω m = suc p
40 39 eximi m m D n = suc m m p m D n = suc m p ω m = suc p
41 30 40 syl n 1 𝑜 n D m p m D n = suc m p ω m = suc p
42 15 2exbii m p η m p m D n = suc m p ω m = suc p
43 41 42 sylibr n 1 𝑜 n D m p η
44 rsp m D m E n [˙m / n]˙ χ m D m E n [˙m / n]˙ χ
45 5 44 sylbi θ m D m E n [˙m / n]˙ χ
46 45 3imp θ m D m E n [˙m / n]˙ χ
47 46 8 sylibr Could not format ( ( th /\ m e. D /\ m _E n ) -> ch' ) : No typesetting found for |- ( ( th /\ m e. D /\ m _E n ) -> ch' ) with typecode |-
48 1 6 24 bnj523 Could not format ( ph' <-> ( f ` (/) ) = _pred ( x , A , R ) ) : No typesetting found for |- ( ph' <-> ( f ` (/) ) = _pred ( x , A , R ) ) with typecode |-
49 2 7 24 bnj539 Could not format ( ps' <-> A. i e. _om ( suc i e. m -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) : No typesetting found for |- ( ps' <-> A. i e. _om ( suc i e. m -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) with typecode |-
50 48 49 3 12 13 14 bnj544 R FrSe A τ σ G Fn n
51 14 15 50 bnj561 R FrSe A τ η G Fn n
52 48 3 12 13 14 50 26 bnj545 Could not format ( ( R _FrSe A /\ ta /\ si ) -> ph" ) : No typesetting found for |- ( ( R _FrSe A /\ ta /\ si ) -> ph" ) with typecode |-
53 14 15 52 bnj562 Could not format ( ( R _FrSe A /\ ta /\ et ) -> ph" ) : No typesetting found for |- ( ( R _FrSe A /\ ta /\ et ) -> ph" ) with typecode |-
54 3 12 13 14 15 16 18 19 20 21 22 48 49 50 17 51 27 bnj571 Could not format ( ( R _FrSe A /\ ta /\ et ) -> ps" ) : No typesetting found for |- ( ( R _FrSe A /\ ta /\ et ) -> ps" ) with typecode |-
55 biid [˙z / f]˙ φ [˙z / f]˙ φ
56 biid [˙z / f]˙ ψ [˙z / f]˙ ψ
57 biid [˙G / z]˙ [˙z / f]˙ φ [˙G / z]˙ [˙z / f]˙ φ
58 biid [˙G / z]˙ [˙z / f]˙ ψ [˙G / z]˙ [˙z / f]˙ ψ
59 5 9 10 13 15 23 25 26 27 43 47 51 53 54 1 2 55 56 57 58 bnj607 n 1 𝑜 n D θ R FrSe A x A f f Fn n φ ψ
60 1 2 3 bnj579 n D * f f Fn n φ ψ
61 60 a1d n D R FrSe A x A * f f Fn n φ ψ
62 61 3ad2ant2 n 1 𝑜 n D θ R FrSe A x A * f f Fn n φ ψ
63 59 62 jcad n 1 𝑜 n D θ R FrSe A x A f f Fn n φ ψ * f f Fn n φ ψ
64 df-eu ∃! f f Fn n φ ψ f f Fn n φ ψ * f f Fn n φ ψ
65 63 64 syl6ibr n 1 𝑜 n D θ R FrSe A x A ∃! f f Fn n φ ψ
66 65 4 sylibr n 1 𝑜 n D θ χ
67 66 3expib n 1 𝑜 n D θ χ