Metamath Proof Explorer


Theorem bnj601

Description: Technical lemma for bnj852 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj601.1 φ f = pred x A R
bnj601.2 ψ i ω suc i n f suc i = y f i pred y A R
bnj601.3 D = ω
bnj601.4 χ R FrSe A x A ∃! f f Fn n φ ψ
bnj601.5 θ m D m E n [˙m / n]˙ χ
Assertion bnj601 n 1 𝑜 n D θ χ

Proof

Step Hyp Ref Expression
1 bnj601.1 φ f = pred x A R
2 bnj601.2 ψ i ω suc i n f suc i = y f i pred y A R
3 bnj601.3 D = ω
4 bnj601.4 χ R FrSe A x A ∃! f f Fn n φ ψ
5 bnj601.5 θ m D m E n [˙m / n]˙ χ
6 biid [˙m / n]˙ φ [˙m / n]˙ φ
7 biid [˙m / n]˙ ψ [˙m / n]˙ ψ
8 biid [˙m / n]˙ χ [˙m / n]˙ χ
9 bnj602 y = z pred y A R = pred z A R
10 9 cbviunv y f p pred y A R = z f p pred z A R
11 10 opeq2i m y f p pred y A R = m z f p pred z A R
12 11 sneqi m y f p pred y A R = m z f p pred z A R
13 12 uneq2i f m y f p pred y A R = f m z f p pred z A R
14 dfsbcq f m y f p pred y A R = f m z f p pred z A R [˙ f m y f p pred y A R / f]˙ φ [˙ f m z f p pred z A R / f]˙ φ
15 13 14 ax-mp [˙ f m y f p pred y A R / f]˙ φ [˙ f m z f p pred z A R / f]˙ φ
16 dfsbcq f m y f p pred y A R = f m z f p pred z A R [˙ f m y f p pred y A R / f]˙ ψ [˙ f m z f p pred z A R / f]˙ ψ
17 13 16 ax-mp [˙ f m y f p pred y A R / f]˙ ψ [˙ f m z f p pred z A R / f]˙ ψ
18 dfsbcq f m y f p pred y A R = f m z f p pred z A R [˙ f m y f p pred y A R / f]˙ χ [˙ f m z f p pred z A R / f]˙ χ
19 13 18 ax-mp [˙ f m y f p pred y A R / f]˙ χ [˙ f m z f p pred z A R / f]˙ χ
20 13 eqcomi f m z f p pred z A R = f m y f p pred y A R
21 biid f Fn m [˙m / n]˙ φ [˙m / n]˙ ψ f Fn m [˙m / n]˙ φ [˙m / n]˙ ψ
22 biid m D n = suc m p m m D n = suc m p m
23 biid m D n = suc m p ω m = suc p m D n = suc m p ω m = suc p
24 biid i ω suc i n m = suc i i ω suc i n m = suc i
25 biid i ω suc i n m suc i i ω suc i n m suc i
26 eqid y f i pred y A R = y f i pred y A R
27 eqid y f p pred y A R = y f p pred y A R
28 eqid y f m z f p pred z A R i pred y A R = y f m z f p pred z A R i pred y A R
29 eqid y f m z f p pred z A R p pred y A R = y f m z f p pred z A R p pred y A R
30 1 2 3 4 5 6 7 8 15 17 19 20 21 22 23 24 25 26 27 28 29 20 bnj600 n 1 𝑜 n D θ χ