Metamath Proof Explorer


Theorem bnj602

Description: Equality theorem for the _pred function constant. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion bnj602 X = Y pred X A R = pred Y A R

Proof

Step Hyp Ref Expression
1 breq2 X = Y y R X y R Y
2 1 rabbidv X = Y y A | y R X = y A | y R Y
3 df-bnj14 pred X A R = y A | y R X
4 df-bnj14 pred Y A R = y A | y R Y
5 2 3 4 3eqtr4g X = Y pred X A R = pred Y A R