Metamath Proof Explorer


Theorem bnj611

Description: Technical lemma for bnj852 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj611.1 ψ i ω suc i N f suc i = y f i pred y A R
bnj611.2 No typesetting found for |- ( ps" <-> [. G / f ]. ps ) with typecode |-
bnj611.3 G V
Assertion bnj611 Could not format assertion : No typesetting found for |- ( ps" <-> A. i e. _om ( suc i e. N -> ( G ` suc i ) = U_ y e. ( G ` i ) _pred ( y , A , R ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 bnj611.1 ψ i ω suc i N f suc i = y f i pred y A R
2 bnj611.2 Could not format ( ps" <-> [. G / f ]. ps ) : No typesetting found for |- ( ps" <-> [. G / f ]. ps ) with typecode |-
3 bnj611.3 G V
4 df-ral i ω suc i N f suc i = y f i pred y A R i i ω suc i N f suc i = y f i pred y A R
5 4 bicomi i i ω suc i N f suc i = y f i pred y A R i ω suc i N f suc i = y f i pred y A R
6 5 sbcbii [˙G / f]˙ i i ω suc i N f suc i = y f i pred y A R [˙G / f]˙ i ω suc i N f suc i = y f i pred y A R
7 nfv f i ω
8 7 sbc19.21g G V [˙G / f]˙ i ω suc i N f suc i = y f i pred y A R i ω [˙G / f]˙ suc i N f suc i = y f i pred y A R
9 3 8 ax-mp [˙G / f]˙ i ω suc i N f suc i = y f i pred y A R i ω [˙G / f]˙ suc i N f suc i = y f i pred y A R
10 nfv f suc i N
11 10 sbc19.21g G V [˙G / f]˙ suc i N f suc i = y f i pred y A R suc i N [˙G / f]˙ f suc i = y f i pred y A R
12 3 11 ax-mp [˙G / f]˙ suc i N f suc i = y f i pred y A R suc i N [˙G / f]˙ f suc i = y f i pred y A R
13 fveq1 f = G f suc i = G suc i
14 fveq1 f = G f i = G i
15 14 bnj1113 f = G y f i pred y A R = y G i pred y A R
16 13 15 eqeq12d f = G f suc i = y f i pred y A R G suc i = y G i pred y A R
17 fveq1 f = e f suc i = e suc i
18 fveq1 f = e f i = e i
19 18 bnj1113 f = e y f i pred y A R = y e i pred y A R
20 17 19 eqeq12d f = e f suc i = y f i pred y A R e suc i = y e i pred y A R
21 fveq1 e = G e suc i = G suc i
22 fveq1 e = G e i = G i
23 22 bnj1113 e = G y e i pred y A R = y G i pred y A R
24 21 23 eqeq12d e = G e suc i = y e i pred y A R G suc i = y G i pred y A R
25 3 16 20 24 bnj610 [˙G / f]˙ f suc i = y f i pred y A R G suc i = y G i pred y A R
26 25 imbi2i suc i N [˙G / f]˙ f suc i = y f i pred y A R suc i N G suc i = y G i pred y A R
27 12 26 bitri [˙G / f]˙ suc i N f suc i = y f i pred y A R suc i N G suc i = y G i pred y A R
28 27 imbi2i i ω [˙G / f]˙ suc i N f suc i = y f i pred y A R i ω suc i N G suc i = y G i pred y A R
29 9 28 bitri [˙G / f]˙ i ω suc i N f suc i = y f i pred y A R i ω suc i N G suc i = y G i pred y A R
30 29 albii i [˙G / f]˙ i ω suc i N f suc i = y f i pred y A R i i ω suc i N G suc i = y G i pred y A R
31 sbcal [˙G / f]˙ i i ω suc i N f suc i = y f i pred y A R i [˙G / f]˙ i ω suc i N f suc i = y f i pred y A R
32 df-ral i ω suc i N G suc i = y G i pred y A R i i ω suc i N G suc i = y G i pred y A R
33 30 31 32 3bitr4ri i ω suc i N G suc i = y G i pred y A R [˙G / f]˙ i i ω suc i N f suc i = y f i pred y A R
34 1 sbcbii [˙G / f]˙ ψ [˙G / f]˙ i ω suc i N f suc i = y f i pred y A R
35 6 33 34 3bitr4ri [˙G / f]˙ ψ i ω suc i N G suc i = y G i pred y A R
36 2 35 bitri Could not format ( ps" <-> A. i e. _om ( suc i e. N -> ( G ` suc i ) = U_ y e. ( G ` i ) _pred ( y , A , R ) ) ) : No typesetting found for |- ( ps" <-> A. i e. _om ( suc i e. N -> ( G ` suc i ) = U_ y e. ( G ` i ) _pred ( y , A , R ) ) ) with typecode |-