Metamath Proof Explorer


Theorem bnj62

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion bnj62 [˙z / x]˙ x Fn A z Fn A

Proof

Step Hyp Ref Expression
1 vex y V
2 fneq1 x = y x Fn A y Fn A
3 1 2 sbcie [˙y / x]˙ x Fn A y Fn A
4 3 sbcbii [˙z / y]˙ [˙y / x]˙ x Fn A [˙z / y]˙ y Fn A
5 sbccow [˙z / y]˙ [˙y / x]˙ x Fn A [˙z / x]˙ x Fn A
6 vex z V
7 fneq1 y = z y Fn A z Fn A
8 6 7 sbcie [˙z / y]˙ y Fn A z Fn A
9 4 5 8 3bitr3i [˙z / x]˙ x Fn A z Fn A