Metamath Proof Explorer


Theorem bnj706

Description: /\ -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypothesis bnj706.1 ψ τ
Assertion bnj706 φ ψ χ θ τ

Proof

Step Hyp Ref Expression
1 bnj706.1 ψ τ
2 bnj643 φ ψ χ θ ψ
3 2 1 syl φ ψ χ θ τ