Metamath Proof Explorer


Theorem bnj721

Description: /\ -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypothesis bnj721.1 φ ψ χ τ
Assertion bnj721 φ ψ χ θ τ

Proof

Step Hyp Ref Expression
1 bnj721.1 φ ψ χ τ
2 bnj658 φ ψ χ θ φ ψ χ
3 2 1 syl φ ψ χ θ τ