Metamath Proof Explorer


Theorem bnj770

Description: /\ -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj770.1 η φ ψ χ θ
bnj770.2 ψ τ
Assertion bnj770 η τ

Proof

Step Hyp Ref Expression
1 bnj770.1 η φ ψ χ θ
2 bnj770.2 ψ τ
3 2 bnj706 φ ψ χ θ τ
4 1 3 sylbi η τ