Metamath Proof Explorer


Theorem bnj832

Description: /\ -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj832.1 η φ ψ
bnj832.2 φ τ
Assertion bnj832 η τ

Proof

Step Hyp Ref Expression
1 bnj832.1 η φ ψ
2 bnj832.2 φ τ
3 2 adantr φ ψ τ
4 1 3 sylbi η τ