Metamath Proof Explorer


Theorem bnj849

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (Proof shortened by Mario Carneiro, 22-Dec-2016) (New usage is discouraged.)

Ref Expression
Hypotheses bnj849.1 φ f = pred X A R
bnj849.2 ψ i ω suc i n f suc i = y f i pred y A R
bnj849.3 D = ω
bnj849.4 B = f | n D f Fn n φ ψ
bnj849.5 χ R FrSe A X A n D
bnj849.6 θ f Fn n φ ψ
bnj849.7 No typesetting found for |- ( ph' <-> [. g / f ]. ph ) with typecode |-
bnj849.8 No typesetting found for |- ( ps' <-> [. g / f ]. ps ) with typecode |-
bnj849.9 No typesetting found for |- ( th' <-> [. g / f ]. th ) with typecode |-
bnj849.10 τ R FrSe A X A
Assertion bnj849 R FrSe A X A B V

Proof

Step Hyp Ref Expression
1 bnj849.1 φ f = pred X A R
2 bnj849.2 ψ i ω suc i n f suc i = y f i pred y A R
3 bnj849.3 D = ω
4 bnj849.4 B = f | n D f Fn n φ ψ
5 bnj849.5 χ R FrSe A X A n D
6 bnj849.6 θ f Fn n φ ψ
7 bnj849.7 Could not format ( ph' <-> [. g / f ]. ph ) : No typesetting found for |- ( ph' <-> [. g / f ]. ph ) with typecode |-
8 bnj849.8 Could not format ( ps' <-> [. g / f ]. ps ) : No typesetting found for |- ( ps' <-> [. g / f ]. ps ) with typecode |-
9 bnj849.9 Could not format ( th' <-> [. g / f ]. th ) : No typesetting found for |- ( th' <-> [. g / f ]. th ) with typecode |-
10 bnj849.10 τ R FrSe A X A
11 1 2 3 5 6 bnj865 w n χ f w θ
12 4 7 8 bnj873 Could not format B = { g | E. n e. D ( g Fn n /\ ph' /\ ps' ) } : No typesetting found for |- B = { g | E. n e. D ( g Fn n /\ ph' /\ ps' ) } with typecode |-
13 df-rex Could not format ( E. n e. D ( g Fn n /\ ph' /\ ps' ) <-> E. n ( n e. D /\ ( g Fn n /\ ph' /\ ps' ) ) ) : No typesetting found for |- ( E. n e. D ( g Fn n /\ ph' /\ ps' ) <-> E. n ( n e. D /\ ( g Fn n /\ ph' /\ ps' ) ) ) with typecode |-
14 19.29 Could not format ( ( A. n ( ch -> E. f e. w th ) /\ E. n ( n e. D /\ ( g Fn n /\ ph' /\ ps' ) ) ) -> E. n ( ( ch -> E. f e. w th ) /\ ( n e. D /\ ( g Fn n /\ ph' /\ ps' ) ) ) ) : No typesetting found for |- ( ( A. n ( ch -> E. f e. w th ) /\ E. n ( n e. D /\ ( g Fn n /\ ph' /\ ps' ) ) ) -> E. n ( ( ch -> E. f e. w th ) /\ ( n e. D /\ ( g Fn n /\ ph' /\ ps' ) ) ) ) with typecode |-
15 an12 Could not format ( ( ( ch -> E. f e. w th ) /\ ( n e. D /\ ( g Fn n /\ ph' /\ ps' ) ) ) <-> ( n e. D /\ ( ( ch -> E. f e. w th ) /\ ( g Fn n /\ ph' /\ ps' ) ) ) ) : No typesetting found for |- ( ( ( ch -> E. f e. w th ) /\ ( n e. D /\ ( g Fn n /\ ph' /\ ps' ) ) ) <-> ( n e. D /\ ( ( ch -> E. f e. w th ) /\ ( g Fn n /\ ph' /\ ps' ) ) ) ) with typecode |-
16 df-3an R FrSe A X A n D R FrSe A X A n D
17 10 anbi1i τ n D R FrSe A X A n D
18 16 5 17 3bitr4i χ τ n D
19 id χ χ
20 6 7 8 9 bnj581 Could not format ( th' <-> ( g Fn n /\ ph' /\ ps' ) ) : No typesetting found for |- ( th' <-> ( g Fn n /\ ph' /\ ps' ) ) with typecode |-
21 9 20 bitr3i Could not format ( [. g / f ]. th <-> ( g Fn n /\ ph' /\ ps' ) ) : No typesetting found for |- ( [. g / f ]. th <-> ( g Fn n /\ ph' /\ ps' ) ) with typecode |-
22 1 2 3 5 6 bnj864 χ ∃! f θ
23 df-rex f w θ f f w θ
24 exancom f f w θ f θ f w
25 23 24 sylbb f w θ f θ f w
26 nfeu1 f ∃! f θ
27 nfe1 f f θ f w
28 26 27 nfan f ∃! f θ f θ f w
29 nfsbc1v f [˙g / f]˙ θ
30 nfv f g w
31 29 30 nfim f [˙g / f]˙ θ g w
32 28 31 nfim f ∃! f θ f θ f w [˙g / f]˙ θ g w
33 sbceq1a f = g θ [˙g / f]˙ θ
34 elequ1 f = g f w g w
35 33 34 imbi12d f = g θ f w [˙g / f]˙ θ g w
36 35 imbi2d f = g ∃! f θ f θ f w θ f w ∃! f θ f θ f w [˙g / f]˙ θ g w
37 eupick ∃! f θ f θ f w θ f w
38 32 36 37 chvarfv ∃! f θ f θ f w [˙g / f]˙ θ g w
39 22 25 38 syl2an χ f w θ [˙g / f]˙ θ g w
40 21 39 syl5bir Could not format ( ( ch /\ E. f e. w th ) -> ( ( g Fn n /\ ph' /\ ps' ) -> g e. w ) ) : No typesetting found for |- ( ( ch /\ E. f e. w th ) -> ( ( g Fn n /\ ph' /\ ps' ) -> g e. w ) ) with typecode |-
41 40 ex Could not format ( ch -> ( E. f e. w th -> ( ( g Fn n /\ ph' /\ ps' ) -> g e. w ) ) ) : No typesetting found for |- ( ch -> ( E. f e. w th -> ( ( g Fn n /\ ph' /\ ps' ) -> g e. w ) ) ) with typecode |-
42 19 41 embantd Could not format ( ch -> ( ( ch -> E. f e. w th ) -> ( ( g Fn n /\ ph' /\ ps' ) -> g e. w ) ) ) : No typesetting found for |- ( ch -> ( ( ch -> E. f e. w th ) -> ( ( g Fn n /\ ph' /\ ps' ) -> g e. w ) ) ) with typecode |-
43 42 impd Could not format ( ch -> ( ( ( ch -> E. f e. w th ) /\ ( g Fn n /\ ph' /\ ps' ) ) -> g e. w ) ) : No typesetting found for |- ( ch -> ( ( ( ch -> E. f e. w th ) /\ ( g Fn n /\ ph' /\ ps' ) ) -> g e. w ) ) with typecode |-
44 18 43 sylbir Could not format ( ( ta /\ n e. D ) -> ( ( ( ch -> E. f e. w th ) /\ ( g Fn n /\ ph' /\ ps' ) ) -> g e. w ) ) : No typesetting found for |- ( ( ta /\ n e. D ) -> ( ( ( ch -> E. f e. w th ) /\ ( g Fn n /\ ph' /\ ps' ) ) -> g e. w ) ) with typecode |-
45 44 expimpd Could not format ( ta -> ( ( n e. D /\ ( ( ch -> E. f e. w th ) /\ ( g Fn n /\ ph' /\ ps' ) ) ) -> g e. w ) ) : No typesetting found for |- ( ta -> ( ( n e. D /\ ( ( ch -> E. f e. w th ) /\ ( g Fn n /\ ph' /\ ps' ) ) ) -> g e. w ) ) with typecode |-
46 15 45 syl5bi Could not format ( ta -> ( ( ( ch -> E. f e. w th ) /\ ( n e. D /\ ( g Fn n /\ ph' /\ ps' ) ) ) -> g e. w ) ) : No typesetting found for |- ( ta -> ( ( ( ch -> E. f e. w th ) /\ ( n e. D /\ ( g Fn n /\ ph' /\ ps' ) ) ) -> g e. w ) ) with typecode |-
47 46 exlimdv Could not format ( ta -> ( E. n ( ( ch -> E. f e. w th ) /\ ( n e. D /\ ( g Fn n /\ ph' /\ ps' ) ) ) -> g e. w ) ) : No typesetting found for |- ( ta -> ( E. n ( ( ch -> E. f e. w th ) /\ ( n e. D /\ ( g Fn n /\ ph' /\ ps' ) ) ) -> g e. w ) ) with typecode |-
48 14 47 syl5 Could not format ( ta -> ( ( A. n ( ch -> E. f e. w th ) /\ E. n ( n e. D /\ ( g Fn n /\ ph' /\ ps' ) ) ) -> g e. w ) ) : No typesetting found for |- ( ta -> ( ( A. n ( ch -> E. f e. w th ) /\ E. n ( n e. D /\ ( g Fn n /\ ph' /\ ps' ) ) ) -> g e. w ) ) with typecode |-
49 48 expdimp Could not format ( ( ta /\ A. n ( ch -> E. f e. w th ) ) -> ( E. n ( n e. D /\ ( g Fn n /\ ph' /\ ps' ) ) -> g e. w ) ) : No typesetting found for |- ( ( ta /\ A. n ( ch -> E. f e. w th ) ) -> ( E. n ( n e. D /\ ( g Fn n /\ ph' /\ ps' ) ) -> g e. w ) ) with typecode |-
50 13 49 syl5bi Could not format ( ( ta /\ A. n ( ch -> E. f e. w th ) ) -> ( E. n e. D ( g Fn n /\ ph' /\ ps' ) -> g e. w ) ) : No typesetting found for |- ( ( ta /\ A. n ( ch -> E. f e. w th ) ) -> ( E. n e. D ( g Fn n /\ ph' /\ ps' ) -> g e. w ) ) with typecode |-
51 50 abssdv Could not format ( ( ta /\ A. n ( ch -> E. f e. w th ) ) -> { g | E. n e. D ( g Fn n /\ ph' /\ ps' ) } C_ w ) : No typesetting found for |- ( ( ta /\ A. n ( ch -> E. f e. w th ) ) -> { g | E. n e. D ( g Fn n /\ ph' /\ ps' ) } C_ w ) with typecode |-
52 12 51 eqsstrid τ n χ f w θ B w
53 vex w V
54 53 ssex B w B V
55 52 54 syl τ n χ f w θ B V
56 55 ex τ n χ f w θ B V
57 56 exlimdv τ w n χ f w θ B V
58 11 57 mpi τ B V
59 10 58 sylbir R FrSe A X A B V