Metamath Proof Explorer


Theorem bnj865

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj865.1 φ f = pred X A R
bnj865.2 ψ i ω suc i n f suc i = y f i pred y A R
bnj865.3 D = ω
bnj865.5 χ R FrSe A X A n D
bnj865.6 θ f Fn n φ ψ
Assertion bnj865 w n χ f w θ

Proof

Step Hyp Ref Expression
1 bnj865.1 φ f = pred X A R
2 bnj865.2 ψ i ω suc i n f suc i = y f i pred y A R
3 bnj865.3 D = ω
4 bnj865.5 χ R FrSe A X A n D
5 bnj865.6 θ f Fn n φ ψ
6 1 2 3 bnj852 R FrSe A X A n D ∃! f f Fn n φ ψ
7 omex ω V
8 difexg ω V ω V
9 7 8 ax-mp ω V
10 3 9 eqeltri D V
11 raleq z = D n z ∃! f f Fn n φ ψ n D ∃! f f Fn n φ ψ
12 raleq z = D n z f w f Fn n φ ψ n D f w f Fn n φ ψ
13 12 exbidv z = D w n z f w f Fn n φ ψ w n D f w f Fn n φ ψ
14 11 13 imbi12d z = D n z ∃! f f Fn n φ ψ w n z f w f Fn n φ ψ n D ∃! f f Fn n φ ψ w n D f w f Fn n φ ψ
15 zfrep6 n z ∃! f f Fn n φ ψ w n z f w f Fn n φ ψ
16 10 14 15 vtocl n D ∃! f f Fn n φ ψ w n D f w f Fn n φ ψ
17 6 16 syl R FrSe A X A w n D f w f Fn n φ ψ
18 19.37v w R FrSe A X A n D f w f Fn n φ ψ R FrSe A X A w n D f w f Fn n φ ψ
19 17 18 mpbir w R FrSe A X A n D f w f Fn n φ ψ
20 df-ral n D f w f Fn n φ ψ n n D f w f Fn n φ ψ
21 20 imbi2i R FrSe A X A n D f w f Fn n φ ψ R FrSe A X A n n D f w f Fn n φ ψ
22 19.21v n R FrSe A X A n D f w f Fn n φ ψ R FrSe A X A n n D f w f Fn n φ ψ
23 21 22 bitr4i R FrSe A X A n D f w f Fn n φ ψ n R FrSe A X A n D f w f Fn n φ ψ
24 23 exbii w R FrSe A X A n D f w f Fn n φ ψ w n R FrSe A X A n D f w f Fn n φ ψ
25 impexp R FrSe A X A n D f w f Fn n φ ψ R FrSe A X A n D f w f Fn n φ ψ
26 df-3an R FrSe A X A n D R FrSe A X A n D
27 26 bicomi R FrSe A X A n D R FrSe A X A n D
28 27 imbi1i R FrSe A X A n D f w f Fn n φ ψ R FrSe A X A n D f w f Fn n φ ψ
29 25 28 bitr3i R FrSe A X A n D f w f Fn n φ ψ R FrSe A X A n D f w f Fn n φ ψ
30 29 albii n R FrSe A X A n D f w f Fn n φ ψ n R FrSe A X A n D f w f Fn n φ ψ
31 30 exbii w n R FrSe A X A n D f w f Fn n φ ψ w n R FrSe A X A n D f w f Fn n φ ψ
32 24 31 bitri w R FrSe A X A n D f w f Fn n φ ψ w n R FrSe A X A n D f w f Fn n φ ψ
33 19 32 mpbi w n R FrSe A X A n D f w f Fn n φ ψ
34 4 bicomi R FrSe A X A n D χ
35 34 imbi1i R FrSe A X A n D f w f Fn n φ ψ χ f w f Fn n φ ψ
36 35 albii n R FrSe A X A n D f w f Fn n φ ψ n χ f w f Fn n φ ψ
37 36 exbii w n R FrSe A X A n D f w f Fn n φ ψ w n χ f w f Fn n φ ψ
38 33 37 mpbi w n χ f w f Fn n φ ψ
39 5 rexbii f w θ f w f Fn n φ ψ
40 39 imbi2i χ f w θ χ f w f Fn n φ ψ
41 40 albii n χ f w θ n χ f w f Fn n φ ψ
42 41 exbii w n χ f w θ w n χ f w f Fn n φ ψ
43 38 42 mpbir w n χ f w θ