Metamath Proof Explorer


Theorem bnj882

Description: Definition (using hypotheses for readability) of the function giving the transitive closure of X in A by R . (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj882.1 φ f = pred X A R
bnj882.2 ψ i ω suc i n f suc i = y f i pred y A R
bnj882.3 D = ω
bnj882.4 B = f | n D f Fn n φ ψ
Assertion bnj882 trCl X A R = f B i dom f f i

Proof

Step Hyp Ref Expression
1 bnj882.1 φ f = pred X A R
2 bnj882.2 ψ i ω suc i n f suc i = y f i pred y A R
3 bnj882.3 D = ω
4 bnj882.4 B = f | n D f Fn n φ ψ
5 df-bnj18 trCl X A R = f f | n ω f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R i dom f f i
6 df-iun f B i dom f f i = w | f B w i dom f f i
7 df-iun f f | n ω f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R i dom f f i = w | f f | n ω f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R w i dom f f i
8 1 2 anbi12i φ ψ f = pred X A R i ω suc i n f suc i = y f i pred y A R
9 8 anbi2i f Fn n φ ψ f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R
10 3anass f Fn n φ ψ f Fn n φ ψ
11 3anass f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R
12 9 10 11 3bitr4i f Fn n φ ψ f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R
13 3 12 rexeqbii n D f Fn n φ ψ n ω f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R
14 13 abbii f | n D f Fn n φ ψ = f | n ω f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R
15 4 14 eqtri B = f | n ω f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R
16 15 eleq2i f B f f | n ω f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R
17 16 anbi1i f B w i dom f f i f f | n ω f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R w i dom f f i
18 17 rexbii2 f B w i dom f f i f f | n ω f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R w i dom f f i
19 18 abbii w | f B w i dom f f i = w | f f | n ω f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R w i dom f f i
20 7 19 eqtr4i f f | n ω f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R i dom f f i = w | f B w i dom f f i
21 6 20 eqtr4i f B i dom f f i = f f | n ω f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R i dom f f i
22 5 21 eqtr4i trCl X A R = f B i dom f f i