Metamath Proof Explorer


Theorem bnj893

Description: Property of _trCl . Under certain conditions, the transitive closure of X in A by R is a set. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion bnj893 R FrSe A X A trCl X A R V

Proof

Step Hyp Ref Expression
1 biid f = pred X A R f = pred X A R
2 biid i ω suc i n f suc i = y f i pred y A R i ω suc i n f suc i = y f i pred y A R
3 eqid ω = ω
4 eqid f | n ω f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R = f | n ω f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R
5 1 2 3 4 bnj882 trCl X A R = f f | n ω f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R i dom f f i
6 vex g V
7 fveq1 f = g f = g
8 7 eqeq1d f = g f = pred X A R g = pred X A R
9 6 8 sbcie [˙g / f]˙ f = pred X A R g = pred X A R
10 9 bicomi g = pred X A R [˙g / f]˙ f = pred X A R
11 fveq1 f = g f suc i = g suc i
12 fveq1 f = g f i = g i
13 12 iuneq1d f = g y f i pred y A R = y g i pred y A R
14 11 13 eqeq12d f = g f suc i = y f i pred y A R g suc i = y g i pred y A R
15 14 imbi2d f = g suc i n f suc i = y f i pred y A R suc i n g suc i = y g i pred y A R
16 15 ralbidv f = g i ω suc i n f suc i = y f i pred y A R i ω suc i n g suc i = y g i pred y A R
17 6 16 sbcie [˙g / f]˙ i ω suc i n f suc i = y f i pred y A R i ω suc i n g suc i = y g i pred y A R
18 17 bicomi i ω suc i n g suc i = y g i pred y A R [˙g / f]˙ i ω suc i n f suc i = y f i pred y A R
19 4 10 18 bnj873 f | n ω f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R = g | n ω g Fn n g = pred X A R i ω suc i n g suc i = y g i pred y A R
20 19 eleq2i f f | n ω f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R f g | n ω g Fn n g = pred X A R i ω suc i n g suc i = y g i pred y A R
21 20 anbi1i f f | n ω f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R w i dom f f i f g | n ω g Fn n g = pred X A R i ω suc i n g suc i = y g i pred y A R w i dom f f i
22 21 rexbii2 f f | n ω f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R w i dom f f i f g | n ω g Fn n g = pred X A R i ω suc i n g suc i = y g i pred y A R w i dom f f i
23 22 abbii w | f f | n ω f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R w i dom f f i = w | f g | n ω g Fn n g = pred X A R i ω suc i n g suc i = y g i pred y A R w i dom f f i
24 df-iun f f | n ω f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R i dom f f i = w | f f | n ω f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R w i dom f f i
25 df-iun f g | n ω g Fn n g = pred X A R i ω suc i n g suc i = y g i pred y A R i dom f f i = w | f g | n ω g Fn n g = pred X A R i ω suc i n g suc i = y g i pred y A R w i dom f f i
26 23 24 25 3eqtr4i f f | n ω f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R i dom f f i = f g | n ω g Fn n g = pred X A R i ω suc i n g suc i = y g i pred y A R i dom f f i
27 biid g = pred X A R g = pred X A R
28 biid i ω suc i n g suc i = y g i pred y A R i ω suc i n g suc i = y g i pred y A R
29 eqid g | n ω g Fn n g = pred X A R i ω suc i n g suc i = y g i pred y A R = g | n ω g Fn n g = pred X A R i ω suc i n g suc i = y g i pred y A R
30 biid R FrSe A X A n ω R FrSe A X A n ω
31 biid g Fn n g = pred X A R i ω suc i n g suc i = y g i pred y A R g Fn n g = pred X A R i ω suc i n g suc i = y g i pred y A R
32 biid [˙z / g]˙ g = pred X A R [˙z / g]˙ g = pred X A R
33 biid [˙z / g]˙ i ω suc i n g suc i = y g i pred y A R [˙z / g]˙ i ω suc i n g suc i = y g i pred y A R
34 biid [˙z / g]˙ g Fn n g = pred X A R i ω suc i n g suc i = y g i pred y A R [˙z / g]˙ g Fn n g = pred X A R i ω suc i n g suc i = y g i pred y A R
35 biid R FrSe A X A R FrSe A X A
36 27 28 3 29 30 31 32 33 34 35 bnj849 R FrSe A X A g | n ω g Fn n g = pred X A R i ω suc i n g suc i = y g i pred y A R V
37 vex f V
38 37 dmex dom f V
39 fvex f i V
40 38 39 iunex i dom f f i V
41 40 rgenw f g | n ω g Fn n g = pred X A R i ω suc i n g suc i = y g i pred y A R i dom f f i V
42 iunexg g | n ω g Fn n g = pred X A R i ω suc i n g suc i = y g i pred y A R V f g | n ω g Fn n g = pred X A R i ω suc i n g suc i = y g i pred y A R i dom f f i V f g | n ω g Fn n g = pred X A R i ω suc i n g suc i = y g i pred y A R i dom f f i V
43 36 41 42 sylancl R FrSe A X A f g | n ω g Fn n g = pred X A R i ω suc i n g suc i = y g i pred y A R i dom f f i V
44 26 43 eqeltrid R FrSe A X A f f | n ω f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R i dom f f i V
45 5 44 eqeltrid R FrSe A X A trCl X A R V