Metamath Proof Explorer


Theorem bnj90

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (Proof shortened by Mario Carneiro, 22-Dec-2016) (New usage is discouraged.)

Ref Expression
Hypothesis bnj90.1 Y V
Assertion bnj90 [˙Y / x]˙ z Fn x z Fn Y

Proof

Step Hyp Ref Expression
1 bnj90.1 Y V
2 fneq2 x = y z Fn x z Fn y
3 fneq2 y = Y z Fn y z Fn Y
4 2 3 sbcie2g Y V [˙Y / x]˙ z Fn x z Fn Y
5 1 4 ax-mp [˙Y / x]˙ z Fn x z Fn Y