Metamath Proof Explorer


Theorem bnj900

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj900.3 D = ω
bnj900.4 B = f | n D f Fn n φ ψ
Assertion bnj900 f B dom f

Proof

Step Hyp Ref Expression
1 bnj900.3 D = ω
2 bnj900.4 B = f | n D f Fn n φ ψ
3 2 bnj1436 f B n D f Fn n φ ψ
4 simp1 f Fn n φ ψ f Fn n
5 4 reximi n D f Fn n φ ψ n D f Fn n
6 fndm f Fn n dom f = n
7 6 reximi n D f Fn n n D dom f = n
8 3 5 7 3syl f B n D dom f = n
9 8 bnj1196 f B n n D dom f = n
10 nfre1 n n D f Fn n φ ψ
11 10 nfab _ n f | n D f Fn n φ ψ
12 2 11 nfcxfr _ n B
13 12 nfcri n f B
14 13 19.37 n f B n D dom f = n f B n n D dom f = n
15 9 14 mpbir n f B n D dom f = n
16 nfv n dom f
17 13 16 nfim n f B dom f
18 1 bnj529 n D n
19 eleq2 dom f = n dom f n
20 19 biimparc n dom f = n dom f
21 18 20 sylan n D dom f = n dom f
22 21 imim2i f B n D dom f = n f B dom f
23 17 22 exlimi n f B n D dom f = n f B dom f
24 15 23 ax-mp f B dom f