Metamath Proof Explorer


Theorem bnj906

Description: Property of _trCl . (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion bnj906 R FrSe A X A pred X A R trCl X A R

Proof

Step Hyp Ref Expression
1 1onn 1 𝑜 ω
2 1n0 1 𝑜
3 eldifsn 1 𝑜 ω 1 𝑜 ω 1 𝑜
4 1 2 3 mpbir2an 1 𝑜 ω
5 4 ne0ii ω
6 biid f = pred X A R f = pred X A R
7 biid i ω suc i n f suc i = y f i pred y A R i ω suc i n f suc i = y f i pred y A R
8 eqid ω = ω
9 6 7 8 bnj852 R FrSe A X A n ω ∃! f f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R
10 r19.2z ω n ω ∃! f f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R n ω ∃! f f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R
11 5 9 10 sylancr R FrSe A X A n ω ∃! f f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R
12 euex ∃! f f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R f f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R
13 11 12 bnj31 R FrSe A X A n ω f f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R
14 rexcom4 n ω f f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R f n ω f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R
15 13 14 sylib R FrSe A X A f n ω f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R
16 abid f f | n ω f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R n ω f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R
17 15 16 bnj1198 R FrSe A X A f f f | n ω f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R
18 simp2 f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R f = pred X A R
19 18 reximi n ω f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R n ω f = pred X A R
20 16 19 sylbi f f | n ω f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R n ω f = pred X A R
21 df-rex n ω f = pred X A R n n ω f = pred X A R
22 19.41v n n ω f = pred X A R n n ω f = pred X A R
23 22 simprbi n n ω f = pred X A R f = pred X A R
24 21 23 sylbi n ω f = pred X A R f = pred X A R
25 20 24 syl f f | n ω f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R f = pred X A R
26 eqid f | n ω f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R = f | n ω f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R
27 8 26 bnj900 f f | n ω f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R dom f
28 fveq2 i = f i = f
29 28 ssiun2s dom f f i dom f f i
30 27 29 syl f f | n ω f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R f i dom f f i
31 ssiun2 f f | n ω f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R i dom f f i f f | n ω f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R i dom f f i
32 6 7 8 26 bnj882 trCl X A R = f f | n ω f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R i dom f f i
33 31 32 sseqtrrdi f f | n ω f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R i dom f f i trCl X A R
34 30 33 sstrd f f | n ω f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R f trCl X A R
35 25 34 eqsstrrd f f | n ω f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R pred X A R trCl X A R
36 35 exlimiv f f f | n ω f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R pred X A R trCl X A R
37 17 36 syl R FrSe A X A pred X A R trCl X A R