Metamath Proof Explorer


Theorem bnj907

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj907.1 φ f = pred X A R
bnj907.2 ψ i ω suc i n f suc i = y f i pred y A R
bnj907.3 χ n D f Fn n φ ψ
bnj907.4 θ R FrSe A X A y trCl X A R z pred y A R
bnj907.5 τ m ω n = suc m p = suc n
bnj907.6 η i n y f i
bnj907.7 No typesetting found for |- ( ph' <-> [. p / n ]. ph ) with typecode |-
bnj907.8 No typesetting found for |- ( ps' <-> [. p / n ]. ps ) with typecode |-
bnj907.9 No typesetting found for |- ( ch' <-> [. p / n ]. ch ) with typecode |-
bnj907.10 No typesetting found for |- ( ph" <-> [. G / f ]. ph' ) with typecode |-
bnj907.11 No typesetting found for |- ( ps" <-> [. G / f ]. ps' ) with typecode |-
bnj907.12 No typesetting found for |- ( ch" <-> [. G / f ]. ch' ) with typecode |-
bnj907.13 D = ω
bnj907.14 B = f | n D f Fn n φ ψ
bnj907.15 C = y f m pred y A R
bnj907.16 G = f n C
Assertion bnj907 R FrSe A X A TrFo trCl X A R A R

Proof

Step Hyp Ref Expression
1 bnj907.1 φ f = pred X A R
2 bnj907.2 ψ i ω suc i n f suc i = y f i pred y A R
3 bnj907.3 χ n D f Fn n φ ψ
4 bnj907.4 θ R FrSe A X A y trCl X A R z pred y A R
5 bnj907.5 τ m ω n = suc m p = suc n
6 bnj907.6 η i n y f i
7 bnj907.7 Could not format ( ph' <-> [. p / n ]. ph ) : No typesetting found for |- ( ph' <-> [. p / n ]. ph ) with typecode |-
8 bnj907.8 Could not format ( ps' <-> [. p / n ]. ps ) : No typesetting found for |- ( ps' <-> [. p / n ]. ps ) with typecode |-
9 bnj907.9 Could not format ( ch' <-> [. p / n ]. ch ) : No typesetting found for |- ( ch' <-> [. p / n ]. ch ) with typecode |-
10 bnj907.10 Could not format ( ph" <-> [. G / f ]. ph' ) : No typesetting found for |- ( ph" <-> [. G / f ]. ph' ) with typecode |-
11 bnj907.11 Could not format ( ps" <-> [. G / f ]. ps' ) : No typesetting found for |- ( ps" <-> [. G / f ]. ps' ) with typecode |-
12 bnj907.12 Could not format ( ch" <-> [. G / f ]. ch' ) : No typesetting found for |- ( ch" <-> [. G / f ]. ch' ) with typecode |-
13 bnj907.13 D = ω
14 bnj907.14 B = f | n D f Fn n φ ψ
15 bnj907.15 C = y f m pred y A R
16 bnj907.16 G = f n C
17 1 2 3 4 5 6 13 14 bnj1021 f n i m θ θ χ η p τ
18 vex p V
19 3 7 8 9 18 bnj919 Could not format ( ch' <-> ( p e. D /\ f Fn p /\ ph' /\ ps' ) ) : No typesetting found for |- ( ch' <-> ( p e. D /\ f Fn p /\ ph' /\ ps' ) ) with typecode |-
20 16 bnj918 G V
21 19 10 11 12 20 bnj976 Could not format ( ch" <-> ( p e. D /\ G Fn p /\ ph" /\ ps" ) ) : No typesetting found for |- ( ch" <-> ( p e. D /\ G Fn p /\ ph" /\ ps" ) ) with typecode |-
22 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 21 bnj1020 θ χ η p τ pred y A R trCl X A R
23 22 ax-gen m θ χ η p τ pred y A R trCl X A R
24 19.29r m θ θ χ η p τ m θ χ η p τ pred y A R trCl X A R m θ θ χ η p τ θ χ η p τ pred y A R trCl X A R
25 pm3.33 θ θ χ η p τ θ χ η p τ pred y A R trCl X A R θ pred y A R trCl X A R
26 24 25 bnj593 m θ θ χ η p τ m θ χ η p τ pred y A R trCl X A R m θ pred y A R trCl X A R
27 23 26 mpan2 m θ θ χ η p τ m θ pred y A R trCl X A R
28 27 2eximi n i m θ θ χ η p τ n i m θ pred y A R trCl X A R
29 17 28 bnj101 f n i m θ pred y A R trCl X A R
30 19.9v f n i m θ pred y A R trCl X A R n i m θ pred y A R trCl X A R
31 29 30 mpbi n i m θ pred y A R trCl X A R
32 19.9v n i m θ pred y A R trCl X A R i m θ pred y A R trCl X A R
33 31 32 mpbi i m θ pred y A R trCl X A R
34 19.9v i m θ pred y A R trCl X A R m θ pred y A R trCl X A R
35 33 34 mpbi m θ pred y A R trCl X A R
36 19.9v m θ pred y A R trCl X A R θ pred y A R trCl X A R
37 35 36 mpbi θ pred y A R trCl X A R
38 4 bnj1254 θ z pred y A R
39 37 38 sseldd θ z trCl X A R
40 4 39 bnj978 R FrSe A X A TrFo trCl X A R A R