Metamath Proof Explorer


Theorem bnj91

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj91.1 φ f = pred x A R
bnj91.2 Z V
Assertion bnj91 [˙Z / y]˙ φ f = pred x A R

Proof

Step Hyp Ref Expression
1 bnj91.1 φ f = pred x A R
2 bnj91.2 Z V
3 1 sbcbii [˙Z / y]˙ φ [˙Z / y]˙ f = pred x A R
4 2 bnj525 [˙Z / y]˙ f = pred x A R f = pred x A R
5 3 4 bitri [˙Z / y]˙ φ f = pred x A R