Metamath Proof Explorer


Theorem bnj911

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj911.1 φ f = pred X A R
bnj911.2 ψ i ω suc i n f suc i = y f i pred y A R
Assertion bnj911 f Fn n φ ψ i f Fn n φ ψ

Proof

Step Hyp Ref Expression
1 bnj911.1 φ f = pred X A R
2 bnj911.2 ψ i ω suc i n f suc i = y f i pred y A R
3 2 bnj1095 ψ i ψ
4 3 bnj1350 f Fn n φ ψ i f Fn n φ ψ