Step |
Hyp |
Ref |
Expression |
1 |
|
bnj916.1 |
|
2 |
|
bnj916.2 |
|
3 |
|
bnj916.3 |
|
4 |
|
bnj916.4 |
|
5 |
|
bnj916.5 |
|
6 |
|
bnj256 |
|
7 |
6
|
2exbii |
|
8 |
|
19.41v |
|
9 |
|
nfv |
|
10 |
1 2
|
bnj911 |
|
11 |
10
|
nf5i |
|
12 |
9 11
|
nfan |
|
13 |
12
|
19.42 |
|
14 |
13
|
exbii |
|
15 |
|
df-rex |
|
16 |
|
df-rex |
|
17 |
15 16
|
anbi12i |
|
18 |
8 14 17
|
3bitr4i |
|
19 |
7 18
|
bitri |
|
20 |
19
|
exbii |
|
21 |
5
|
3anbi2i |
|
22 |
21
|
anbi1i |
|
23 |
|
df-bnj17 |
|
24 |
|
df-bnj17 |
|
25 |
22 23 24
|
3bitr4i |
|
26 |
25
|
3exbii |
|
27 |
1 2 3 4
|
bnj882 |
|
28 |
27
|
eleq2i |
|
29 |
|
eliun |
|
30 |
|
eliun |
|
31 |
30
|
rexbii |
|
32 |
28 29 31
|
3bitri |
|
33 |
|
df-rex |
|
34 |
4
|
abeq2i |
|
35 |
34
|
anbi1i |
|
36 |
35
|
exbii |
|
37 |
32 33 36
|
3bitri |
|
38 |
20 26 37
|
3bitr4ri |
|
39 |
|
bnj643 |
|
40 |
5
|
bnj564 |
|
41 |
40
|
eleq2d |
|
42 |
|
anbi1 |
|
43 |
|
bnj334 |
|
44 |
|
bnj252 |
|
45 |
43 44
|
bitri |
|
46 |
|
bnj334 |
|
47 |
|
bnj252 |
|
48 |
46 47
|
bitri |
|
49 |
42 45 48
|
3bitr4g |
|
50 |
39 41 49
|
3syl |
|
51 |
50
|
ibi |
|
52 |
51
|
2eximi |
|
53 |
52
|
eximi |
|
54 |
38 53
|
sylbi |
|