Metamath Proof Explorer


Theorem bnj917

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj917.1 φ f = pred X A R
bnj917.2 ψ i ω suc i n f suc i = y f i pred y A R
bnj917.3 D = ω
bnj917.4 B = f | n D f Fn n φ ψ
bnj917.5 χ n D f Fn n φ ψ
Assertion bnj917 y trCl X A R f n i χ i n y f i

Proof

Step Hyp Ref Expression
1 bnj917.1 φ f = pred X A R
2 bnj917.2 ψ i ω suc i n f suc i = y f i pred y A R
3 bnj917.3 D = ω
4 bnj917.4 B = f | n D f Fn n φ ψ
5 bnj917.5 χ n D f Fn n φ ψ
6 biid f Fn n φ ψ f Fn n φ ψ
7 1 2 3 4 6 bnj916 y trCl X A R f n i n D f Fn n φ ψ i n y f i
8 bnj252 n D f Fn n φ ψ n D f Fn n φ ψ
9 5 8 bitri χ n D f Fn n φ ψ
10 9 3anbi1i χ i n y f i n D f Fn n φ ψ i n y f i
11 bnj253 n D f Fn n φ ψ i n y f i n D f Fn n φ ψ i n y f i
12 10 11 bitr4i χ i n y f i n D f Fn n φ ψ i n y f i
13 12 3exbii f n i χ i n y f i f n i n D f Fn n φ ψ i n y f i
14 7 13 sylibr y trCl X A R f n i χ i n y f i