Metamath Proof Explorer


Theorem bnj951

Description: /\ -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj951.1 τ φ
bnj951.2 τ ψ
bnj951.3 τ χ
bnj951.4 τ θ
Assertion bnj951 τ φ ψ χ θ

Proof

Step Hyp Ref Expression
1 bnj951.1 τ φ
2 bnj951.2 τ ψ
3 bnj951.3 τ χ
4 bnj951.4 τ θ
5 1 2 3 3jca τ φ ψ χ
6 df-bnj17 φ ψ χ θ φ ψ χ θ
7 5 4 6 sylanbrc τ φ ψ χ θ