Metamath Proof Explorer


Theorem bnj953

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj953.1 ψiωsucinfsuci=yfipredyAR
bnj953.2 Gi=fiyGi=fi
Assertion bnj953 Gi=fiGsuci=fsuciiωsucinψGsuci=yGipredyAR

Proof

Step Hyp Ref Expression
1 bnj953.1 ψiωsucinfsuci=yfipredyAR
2 bnj953.2 Gi=fiyGi=fi
3 bnj312 Gi=fiGsuci=fsuciiωsucinψGsuci=fsuciGi=fiiωsucinψ
4 bnj251 Gsuci=fsuciGi=fiiωsucinψGsuci=fsuciGi=fiiωsucinψ
5 3 4 bitri Gi=fiGsuci=fsuciiωsucinψGsuci=fsuciGi=fiiωsucinψ
6 1 bnj115 ψiiωsucinfsuci=yfipredyAR
7 sp iiωsucinfsuci=yfipredyARiωsucinfsuci=yfipredyAR
8 7 impcom iωsuciniiωsucinfsuci=yfipredyARfsuci=yfipredyAR
9 6 8 sylan2b iωsucinψfsuci=yfipredyAR
10 2 bnj956 Gi=fiyGipredyAR=yfipredyAR
11 eqtr3 fsuci=yfipredyARyGipredyAR=yfipredyARfsuci=yGipredyAR
12 9 10 11 syl2anr Gi=fiiωsucinψfsuci=yGipredyAR
13 eqtr Gsuci=fsucifsuci=yGipredyARGsuci=yGipredyAR
14 12 13 sylan2 Gsuci=fsuciGi=fiiωsucinψGsuci=yGipredyAR
15 5 14 sylbi Gi=fiGsuci=fsuciiωsucinψGsuci=yGipredyAR