Metamath Proof Explorer


Theorem bnj956

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypothesis bnj956.1 A=BxA=B
Assertion bnj956 A=BxAC=xBC

Proof

Step Hyp Ref Expression
1 bnj956.1 A=BxA=B
2 eleq2 A=BxAxB
3 2 anbi1d A=BxAyCxByC
4 3 alexbii xA=BxxAyCxxByC
5 df-rex xAyCxxAyC
6 df-rex xByCxxByC
7 4 5 6 3bitr4g xA=BxAyCxByC
8 1 7 syl A=BxAyCxByC
9 8 abbidv A=By|xAyC=y|xByC
10 df-iun xAC=y|xAyC
11 df-iun xBC=y|xByC
12 9 10 11 3eqtr4g A=BxAC=xBC