Metamath Proof Explorer


Theorem bnj956

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypothesis bnj956.1 A = B x A = B
Assertion bnj956 A = B x A C = x B C

Proof

Step Hyp Ref Expression
1 bnj956.1 A = B x A = B
2 eleq2 A = B x A x B
3 2 anbi1d A = B x A y C x B y C
4 3 alexbii x A = B x x A y C x x B y C
5 df-rex x A y C x x A y C
6 df-rex x B y C x x B y C
7 4 5 6 3bitr4g x A = B x A y C x B y C
8 1 7 syl A = B x A y C x B y C
9 8 abbidv A = B y | x A y C = y | x B y C
10 df-iun x A C = y | x A y C
11 df-iun x B C = y | x B y C
12 9 10 11 3eqtr4g A = B x A C = x B C