Metamath Proof Explorer


Theorem bnj958

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj958.1 C = y f m pred y A R
bnj958.2 G = f n C
Assertion bnj958 G i = f i y G i = f i

Proof

Step Hyp Ref Expression
1 bnj958.1 C = y f m pred y A R
2 bnj958.2 G = f n C
3 nfcv _ y f
4 nfcv _ y n
5 nfiu1 _ y y f m pred y A R
6 1 5 nfcxfr _ y C
7 4 6 nfop _ y n C
8 7 nfsn _ y n C
9 3 8 nfun _ y f n C
10 2 9 nfcxfr _ y G
11 nfcv _ y i
12 10 11 nffv _ y G i
13 12 nfeq1 y G i = f i
14 13 nf5ri G i = f i y G i = f i