Metamath Proof Explorer


Theorem bnj965

Description: Technical lemma for bnj852 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj965.1 ψ i ω suc i N f suc i = y f i pred y A R
bnj965.2 No typesetting found for |- ( ps" <-> [. G / f ]. ps ) with typecode |-
bnj965.12000 C = y f m pred y A R
bnj965.13000 G = f n C
Assertion bnj965 Could not format assertion : No typesetting found for |- ( ps" <-> A. i e. _om ( suc i e. N -> ( G ` suc i ) = U_ y e. ( G ` i ) _pred ( y , A , R ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 bnj965.1 ψ i ω suc i N f suc i = y f i pred y A R
2 bnj965.2 Could not format ( ps" <-> [. G / f ]. ps ) : No typesetting found for |- ( ps" <-> [. G / f ]. ps ) with typecode |-
3 bnj965.12000 C = y f m pred y A R
4 bnj965.13000 G = f n C
5 4 bnj918 G V
6 1 2 5 3 4 bnj1000 Could not format ( ps" <-> A. i e. _om ( suc i e. N -> ( G ` suc i ) = U_ y e. ( G ` i ) _pred ( y , A , R ) ) ) : No typesetting found for |- ( ps" <-> A. i e. _om ( suc i e. N -> ( G ` suc i ) = U_ y e. ( G ` i ) _pred ( y , A , R ) ) ) with typecode |-