Metamath Proof Explorer


Theorem bnj966

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj966.3 χ n D f Fn n φ ψ
bnj966.10 D = ω
bnj966.12 C = y f m pred y A R
bnj966.13 G = f n C
bnj966.44 R FrSe A X A χ n = suc m p = suc n C V
bnj966.53 R FrSe A X A χ n = suc m p = suc n G Fn p
Assertion bnj966 R FrSe A X A χ n = suc m p = suc n i ω suc i p n = suc i G suc i = y G i pred y A R

Proof

Step Hyp Ref Expression
1 bnj966.3 χ n D f Fn n φ ψ
2 bnj966.10 D = ω
3 bnj966.12 C = y f m pred y A R
4 bnj966.13 G = f n C
5 bnj966.44 R FrSe A X A χ n = suc m p = suc n C V
6 bnj966.53 R FrSe A X A χ n = suc m p = suc n G Fn p
7 6 fnfund R FrSe A X A χ n = suc m p = suc n Fun G
8 7 3adant3 R FrSe A X A χ n = suc m p = suc n i ω suc i p n = suc i Fun G
9 opex n C V
10 9 snid n C n C
11 elun2 n C n C n C f n C
12 10 11 ax-mp n C f n C
13 12 4 eleqtrri n C G
14 funopfv Fun G n C G G n = C
15 8 13 14 mpisyl R FrSe A X A χ n = suc m p = suc n i ω suc i p n = suc i G n = C
16 simp22 R FrSe A X A χ n = suc m p = suc n i ω suc i p n = suc i n = suc m
17 simp33 R FrSe A X A χ n = suc m p = suc n i ω suc i p n = suc i n = suc i
18 bnj551 n = suc m n = suc i m = i
19 16 17 18 syl2anc R FrSe A X A χ n = suc m p = suc n i ω suc i p n = suc i m = i
20 suceq m = i suc m = suc i
21 20 eqeq2d m = i n = suc m n = suc i
22 21 biimpac n = suc m m = i n = suc i
23 22 fveq2d n = suc m m = i G n = G suc i
24 fveq2 m = i f m = f i
25 24 bnj1113 m = i y f m pred y A R = y f i pred y A R
26 3 25 syl5eq m = i C = y f i pred y A R
27 26 adantl n = suc m m = i C = y f i pred y A R
28 23 27 eqeq12d n = suc m m = i G n = C G suc i = y f i pred y A R
29 16 19 28 syl2anc R FrSe A X A χ n = suc m p = suc n i ω suc i p n = suc i G n = C G suc i = y f i pred y A R
30 15 29 mpbid R FrSe A X A χ n = suc m p = suc n i ω suc i p n = suc i G suc i = y f i pred y A R
31 5 3adant3 R FrSe A X A χ n = suc m p = suc n i ω suc i p n = suc i C V
32 1 bnj1235 χ f Fn n
33 32 3ad2ant1 χ n = suc m p = suc n f Fn n
34 33 3ad2ant2 R FrSe A X A χ n = suc m p = suc n i ω suc i p n = suc i f Fn n
35 simp23 R FrSe A X A χ n = suc m p = suc n i ω suc i p n = suc i p = suc n
36 31 34 35 17 bnj951 R FrSe A X A χ n = suc m p = suc n i ω suc i p n = suc i C V f Fn n p = suc n n = suc i
37 2 bnj923 n D n ω
38 1 37 bnj769 χ n ω
39 38 3ad2ant1 χ n = suc m p = suc n n ω
40 simp3 i ω suc i p n = suc i n = suc i
41 39 40 bnj240 R FrSe A X A χ n = suc m p = suc n i ω suc i p n = suc i n ω n = suc i
42 vex i V
43 42 bnj216 n = suc i i n
44 43 adantl n ω n = suc i i n
45 41 44 syl R FrSe A X A χ n = suc m p = suc n i ω suc i p n = suc i i n
46 bnj658 C V f Fn n p = suc n n = suc i C V f Fn n p = suc n
47 46 anim1i C V f Fn n p = suc n n = suc i i n C V f Fn n p = suc n i n
48 df-bnj17 C V f Fn n p = suc n i n C V f Fn n p = suc n i n
49 47 48 sylibr C V f Fn n p = suc n n = suc i i n C V f Fn n p = suc n i n
50 4 bnj945 C V f Fn n p = suc n i n G i = f i
51 49 50 syl C V f Fn n p = suc n n = suc i i n G i = f i
52 36 45 51 syl2anc R FrSe A X A χ n = suc m p = suc n i ω suc i p n = suc i G i = f i
53 3 4 bnj958 G i = f i y G i = f i
54 53 bnj956 G i = f i y G i pred y A R = y f i pred y A R
55 54 eqeq2d G i = f i G suc i = y G i pred y A R G suc i = y f i pred y A R
56 52 55 syl R FrSe A X A χ n = suc m p = suc n i ω suc i p n = suc i G suc i = y G i pred y A R G suc i = y f i pred y A R
57 30 56 mpbird R FrSe A X A χ n = suc m p = suc n i ω suc i p n = suc i G suc i = y G i pred y A R