Metamath Proof Explorer


Theorem bnj967

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj967.2 ψ i ω suc i n f suc i = y f i pred y A R
bnj967.3 χ n D f Fn n φ ψ
bnj967.10 D = ω
bnj967.12 C = y f m pred y A R
bnj967.13 G = f n C
bnj967.44 R FrSe A X A χ n = suc m p = suc n C V
Assertion bnj967 R FrSe A X A χ n = suc m p = suc n i ω suc i p suc i n G suc i = y G i pred y A R

Proof

Step Hyp Ref Expression
1 bnj967.2 ψ i ω suc i n f suc i = y f i pred y A R
2 bnj967.3 χ n D f Fn n φ ψ
3 bnj967.10 D = ω
4 bnj967.12 C = y f m pred y A R
5 bnj967.13 G = f n C
6 bnj967.44 R FrSe A X A χ n = suc m p = suc n C V
7 6 3adant3 R FrSe A X A χ n = suc m p = suc n i ω suc i p suc i n C V
8 2 bnj1235 χ f Fn n
9 8 3ad2ant1 χ n = suc m p = suc n f Fn n
10 9 3ad2ant2 R FrSe A X A χ n = suc m p = suc n i ω suc i p suc i n f Fn n
11 simp23 R FrSe A X A χ n = suc m p = suc n i ω suc i p suc i n p = suc n
12 simp3 i ω suc i p suc i n suc i n
13 12 3ad2ant3 R FrSe A X A χ n = suc m p = suc n i ω suc i p suc i n suc i n
14 7 10 11 13 bnj951 R FrSe A X A χ n = suc m p = suc n i ω suc i p suc i n C V f Fn n p = suc n suc i n
15 3 bnj923 n D n ω
16 2 15 bnj769 χ n ω
17 16 3ad2ant1 χ n = suc m p = suc n n ω
18 17 12 bnj240 R FrSe A X A χ n = suc m p = suc n i ω suc i p suc i n n ω suc i n
19 nnord n ω Ord n
20 ordtr Ord n Tr n
21 19 20 syl n ω Tr n
22 trsuc Tr n suc i n i n
23 21 22 sylan n ω suc i n i n
24 18 23 syl R FrSe A X A χ n = suc m p = suc n i ω suc i p suc i n i n
25 bnj658 C V f Fn n p = suc n suc i n C V f Fn n p = suc n
26 25 anim1i C V f Fn n p = suc n suc i n i n C V f Fn n p = suc n i n
27 df-bnj17 C V f Fn n p = suc n i n C V f Fn n p = suc n i n
28 26 27 sylibr C V f Fn n p = suc n suc i n i n C V f Fn n p = suc n i n
29 14 24 28 syl2anc R FrSe A X A χ n = suc m p = suc n i ω suc i p suc i n C V f Fn n p = suc n i n
30 5 bnj945 C V f Fn n p = suc n i n G i = f i
31 29 30 syl R FrSe A X A χ n = suc m p = suc n i ω suc i p suc i n G i = f i
32 5 bnj945 C V f Fn n p = suc n suc i n G suc i = f suc i
33 14 32 syl R FrSe A X A χ n = suc m p = suc n i ω suc i p suc i n G suc i = f suc i
34 3simpb i ω suc i p suc i n i ω suc i n
35 34 3ad2ant3 R FrSe A X A χ n = suc m p = suc n i ω suc i p suc i n i ω suc i n
36 2 bnj1254 χ ψ
37 36 3ad2ant1 χ n = suc m p = suc n ψ
38 37 3ad2ant2 R FrSe A X A χ n = suc m p = suc n i ω suc i p suc i n ψ
39 31 33 35 38 bnj951 R FrSe A X A χ n = suc m p = suc n i ω suc i p suc i n G i = f i G suc i = f suc i i ω suc i n ψ
40 4 5 bnj958 G i = f i y G i = f i
41 1 40 bnj953 G i = f i G suc i = f suc i i ω suc i n ψ G suc i = y G i pred y A R
42 39 41 syl R FrSe A X A χ n = suc m p = suc n i ω suc i p suc i n G suc i = y G i pred y A R