Metamath Proof Explorer


Theorem bnj969

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj969.1 φ f = pred X A R
bnj969.2 ψ i ω suc i n f suc i = y f i pred y A R
bnj969.3 χ n D f Fn n φ ψ
bnj969.10 D = ω
bnj969.12 C = y f m pred y A R
bnj969.14 τ f Fn n φ ψ
bnj969.15 σ n D p = suc n m n
Assertion bnj969 R FrSe A X A χ n = suc m p = suc n C V

Proof

Step Hyp Ref Expression
1 bnj969.1 φ f = pred X A R
2 bnj969.2 ψ i ω suc i n f suc i = y f i pred y A R
3 bnj969.3 χ n D f Fn n φ ψ
4 bnj969.10 D = ω
5 bnj969.12 C = y f m pred y A R
6 bnj969.14 τ f Fn n φ ψ
7 bnj969.15 σ n D p = suc n m n
8 simpl R FrSe A X A χ n = suc m p = suc n R FrSe A X A
9 bnj667 n D f Fn n φ ψ f Fn n φ ψ
10 9 3 6 3imtr4i χ τ
11 10 3ad2ant1 χ n = suc m p = suc n τ
12 11 adantl R FrSe A X A χ n = suc m p = suc n τ
13 3 bnj1232 χ n D
14 vex m V
15 14 bnj216 n = suc m m n
16 id p = suc n p = suc n
17 13 15 16 3anim123i χ n = suc m p = suc n n D m n p = suc n
18 3ancomb n D p = suc n m n n D m n p = suc n
19 7 18 bitri σ n D m n p = suc n
20 17 19 sylibr χ n = suc m p = suc n σ
21 20 adantl R FrSe A X A χ n = suc m p = suc n σ
22 8 12 21 jca32 R FrSe A X A χ n = suc m p = suc n R FrSe A X A τ σ
23 bnj256 R FrSe A X A τ σ R FrSe A X A τ σ
24 22 23 sylibr R FrSe A X A χ n = suc m p = suc n R FrSe A X A τ σ
25 4 6 7 1 2 bnj938 R FrSe A X A τ σ y f m pred y A R V
26 5 25 eqeltrid R FrSe A X A τ σ C V
27 24 26 syl R FrSe A X A χ n = suc m p = suc n C V