Metamath Proof Explorer


Theorem bnj97

Description: Technical lemma for bnj150 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypothesis bnj96.1 F = pred x A R
Assertion bnj97 R FrSe A x A F = pred x A R

Proof

Step Hyp Ref Expression
1 bnj96.1 F = pred x A R
2 bnj93 R FrSe A x A pred x A R V
3 0ex V
4 3 bnj519 pred x A R V Fun pred x A R
5 1 funeqi Fun F Fun pred x A R
6 4 5 sylibr pred x A R V Fun F
7 2 6 syl R FrSe A x A Fun F
8 opex pred x A R V
9 8 snid pred x A R pred x A R
10 9 1 eleqtrri pred x A R F
11 funopfv Fun F pred x A R F F = pred x A R
12 7 10 11 mpisyl R FrSe A x A F = pred x A R