Metamath Proof Explorer


Theorem bnj981

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj981.1 φ f = pred X A R
bnj981.2 ψ i ω suc i n f suc i = y f i pred y A R
bnj981.3 D = ω
bnj981.4 B = f | n D f Fn n φ ψ
bnj981.5 χ n D f Fn n φ ψ
Assertion bnj981 Z trCl X A R f n i χ i n Z f i

Proof

Step Hyp Ref Expression
1 bnj981.1 φ f = pred X A R
2 bnj981.2 ψ i ω suc i n f suc i = y f i pred y A R
3 bnj981.3 D = ω
4 bnj981.4 B = f | n D f Fn n φ ψ
5 bnj981.5 χ n D f Fn n φ ψ
6 nfv y Z trCl X A R
7 nfcv _ y ω
8 nfv y suc i n
9 nfiu1 _ y y f i pred y A R
10 9 nfeq2 y f suc i = y f i pred y A R
11 8 10 nfim y suc i n f suc i = y f i pred y A R
12 7 11 nfralw y i ω suc i n f suc i = y f i pred y A R
13 2 12 nfxfr y ψ
14 13 nf5ri ψ y ψ
15 14 5 bnj1096 χ y χ
16 15 nf5i y χ
17 nfv y i n
18 nfv y Z f i
19 16 17 18 nf3an y χ i n Z f i
20 19 nfex y i χ i n Z f i
21 20 nfex y n i χ i n Z f i
22 21 nfex y f n i χ i n Z f i
23 6 22 nfim y Z trCl X A R f n i χ i n Z f i
24 eleq1 y = Z y trCl X A R Z trCl X A R
25 eleq1 y = Z y f i Z f i
26 25 3anbi3d y = Z χ i n y f i χ i n Z f i
27 26 3exbidv y = Z f n i χ i n y f i f n i χ i n Z f i
28 24 27 imbi12d y = Z y trCl X A R f n i χ i n y f i Z trCl X A R f n i χ i n Z f i
29 1 2 3 4 5 bnj917 y trCl X A R f n i χ i n y f i
30 23 28 29 vtoclg1f Z trCl X A R Z trCl X A R f n i χ i n Z f i
31 30 pm2.43i Z trCl X A R f n i χ i n Z f i